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1: In a perfect world at least. Or
more realistically if one is in
charge of a fleet of thousands of
corporate phones.

Introduction 1
In this thesis we will study the death of individuals with the goal of pre-
dicting it from their characteristics. This task, known as survival analysis
and originally intrinsically linked to that of epidemiology, has a rich math-
ematical history and have evolved to follow the successive advancements
in statistics. Modelling the death of an individual have remained for cen-
turies one of the flagship problems of medical research and biostatistics
for the simple reason that understanding the cause of death is a first step
to preventing said death. In parallel, statisticians have provided medical
researchers with the mathematical tools necessary to answer the medical
questions in properly scientific manner and to compare the survival of
subpopulations as well as quantify the certainty of their hypothesis. This
thesis will have plenty of such medical examples as it is not only an inter-
esting and worthwhile endeavour, but because medical researchers have
generously gifted the scientific community with a trove of open datasets.
This memoir is, however, not about medicine but about finance and it is
not about understanding causes and effects or statistically proving state-
ments, but only about predicting death. This thesis, while in large part
theoretical, had for main objective to answer the practical needs of BNP
Paribas and in particular the Portfolio Management department of the
CIB branch whose main role is to reduce the exposure of the bank to credit
risk by actively managing this risk. In order to manage this risk we need
to accurately predict the potential events, often using highly unstructured
and voluminous data, which naturally motivates a rigorous study of credit
risk through the scope of both survival analysis and machine learning.

1.1 Life and Death of a Company
We have mostly described the study of death as the study of death of indi-
viduals but it is not reserved to living beings. Even in everyday language,
it is common to refer to the catastrophic failure of an item as its death; “My
phone died!”. If death can occur for inanimate objects too then it seems
sensible, or at least useful, to predict it before it happens maybe to budget1
for a new phone before the previous one dies. In this specific case, that

1
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Figure 1.1: Physical money vs
money stock.

2: It is also possible to see it as
bandit problem (Ruiz-Hernández,
Pinar-Pérez, and Delgado-Gómez
[2020]; Fouché, Komiyama, and
Böhm [2019]).
3: One could argue that money
itself only represents an iou or
credit in physical form.

4: The money I have today in my
bank account is a loan, which
hopefully my bank will not
default on.

is predicting the failure of a mechanical item, predicting failure before it
happens makes it possible to schedule maintenance in advance in order to
be parsimonious on expensive maintenance checks and operations. This
problem, known in the literature as predictive maintenance (see Zonta
et al. [2020]; Bousdekis et al. [2019]; Ran et al. [2019], for an overview),
is naturally amenable to being treated as a survival analysis problem (see
e.g. C. Chen et al. [2020]).2 A similar interpretation naturally arises in
the financial world through the concept of credits. Since the advent of
banking and later fractional reserve, credits have come to represent the
majority of the money-like assets in circulation3 as it frees liquidity that
can be used in the economy. This phenomenon has greatly accelerated in
recent years as people have come to accept the dissociation between the
concepts of money, i.e. a means of exchange, and physicality. In fig. 1.1 we
represent the money stock of the US dollar, where the M1 stock encom-
passes currency outside the U.S. Treasury, deposits at commercial banks
and other checkable deposits and the M2 stock consists of the M1 stock
plus savings deposits and balances in retail money market funds. While
not inherently a problem, the fact that most of the balance of companies
or even individuals4 now consists of loans which carry counterparty risk
means that wealth has to be treated as a random variable. A default is the
death of a loan.
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5: In the most general setting.
We do not differentiate here, for
the sake of simplicity, between
the credit risk and counterparty
risk.
6: Eventually discounted at the
risk free-rate, but we will ignore
all the purely financial concerns
here.

7: In practice all financial prod-
ucts are valued as the expected
value of their payoff, but the
expected value is not necessarily
under the natural probability
but often under a different prob-
ability called the risk-neutral
measure. This is out of scope of
this thesis but curious readers
can refer to Shreve (2004).

8: That is, en event deep in the
tail of distribution of losses.

9: Readers of this thesis may
also have the more recent Ever-
grande’s case as example depend-
ing on how events unfolded.

1.1.1 Defaults and Contagions
While, from the point of view of the borrower, loans can effectively be
considered discounted money as they receive cold hard cash, the same
cannot be said at all for the lender. From the lender’s point of view, loans
carry a significant amount of uncertainty or risk called counterparty risk5:
the borrower may very well never repay its loan. The value of a loan,
that is the amount of money the loan will bring,6 is therefore a random
quantity. If the borrower repays its loan in entirety then the realized value
will be the loan plus interest while if, for some reason, the loan is not
repaid the value is only equal to the principal and interests repaid until
default. Clearly, the realized gain is stochastic in nature and depends on
the random event “repaid its loan” of which the probability is primordial.
From this observation it is possible to define the fair value of a loan, which
for simplicity we will here assume to be the expected profit,7 and from this
definition of fair value it is possible to find the rate at which a loan should
be emitted. There is, however, one significant drawback to the previous
remark: by reasoning in terms of expected value we hide the fact that
individuals only have a finite amount of money and therefore can only
survive a finite amount of losses. While this would not be a problem if
all entities had more cash on hand than outstanding loans, we have seen
earlier in fig. 1.1 that, for good reasons, the amount of money tied in loans
vastly outsize the amount of money held. It is therefore possible, and even
guaranteed given enough time (see Embrechts, Klüppelberg, and Mikosch
[1997], for ruin theory, e.g. fig. 1.2), that an extreme event8 occurs that is
greater than the lender can bear. While such catastrophic events are in
theory rare, their impact can have catastrophic repercussions for the same
reasons viruses do. Individuals, or in this case companies, do not exist
in a vacuum and interact with each other. While with the plague or the
smallpox this interaction can result in spreading a viral load, in the case of
companies the interaction results in spreading credit losses. A company
suffering an extreme credit loss resulting in its own default is an incredibly
rare event taken individually, but a systematic failure of amultitude of loans
and companies is amuchmore probable event conditioned on this primary
failure, or patient zero. A company suffering a loss sufficient to provoke its
own default is, by definition, not capable of honouring its own loan which
depending on the size of the entity collapsing can provoke the subsequent
default of other companies. As more companies default on their loan, the
phenomenon propagates through the intricate web of financial relations
and can in the worst case provoke a financial crisis. Such events led to
the mortgage crisis of 2008 where the correlation between entities and
therefore the risk of spread of this financial virus was underestimated.9
Given the parallels between biological viruses and credit risk, it should
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10: In size, the general idea and
framework existed beforehand.

11: Please, do not use my expla-
nations as anything more than a
metaphore, see A. J. Pollard and
Bijker (2021).

12: Unexpected in the business
sense, not the mathematical
sense. Abuse of mathematical
terms is a longstanding tradition
in the financial world next to
that of inventing imaginary greek
letters.

13: Voluntarily or not.

not be surprising that people looked toward pandemics for inspiration of
treatments of financial crisis.

1.1.2 Regulatory Vaccination
After the crisis of 2008, unprecedented10 measures were implemented in
order to vaccinate the financial world against credit risk. While vaccines
rely on giving a base minimum amount of antigens in order to survive a
normal viral load,11 credit regulations such as basel ii to basel iv (Basel
Committee [2019]), rely on ensuring a minimum amount of cash buffer to
survive extraordinary, or “unexpected”12 as represented in fig. 1.3, losses
without defaulting and therefore without contaminating other counter-
parties. In order to ensure resiliency of financial actors to extreme losses,
those are required to hold a minimum amount of capital to compensate
for the risky assets denoted here by RWA such that

Capital
RWA
≥ 0.08.

In order to harmonize approaches, and more importantly prevent dubious
calculations for the risk weighted assets (rwa) and therefore severe undes-
timations13 of the capital required, the Bank for International Settlements
(bis) provides a common way of determining the quantities required. For
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14: To represent how central
and connected to others the
institution is.
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fault.

15: Returns in finance are di-
rectly related to risk. Risk-free
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corporate loans for example, the Basel iii framework imposes

Capital = LGD × (Φ(√ 1
1 − 𝑅
Φ−1(𝑝) + √ 𝑅

1 − 𝑅
Φ−1(0.999)) − 𝑝) ,

RWA = Capital × EAD
0.08

,

where 𝑅 is a correlation factor defined by

𝑅 = 𝐴(0.12 × 1 − 𝑒
−50𝑝

1 − 𝑒−50
+ 0.24 × (1 − 1 − 𝑒

−50𝑝

1 − 𝑒−50
)) ,

and 𝐴 ∈ {1, 1.25} is a factor depending on the size of the institution,14
Φ is the cumulative distribution function (cdf) of the standard normal
and 𝑝 is the probability of default. As the probability of default is the
only quantity not explicitly given, and the driver behind the previous
values as quickly illustrated in fig. 1.4, its estimation plays a central role
in the business strategy of financial organizations. Indeed, while there is
no serious drawback to vaccination in humans other than a potentially
sore arm and flu-like syndrome, this is not the case for financial actors.
Preparing oneself against catastrophic default and following the regulations
entails freezing a significant amount of money in risk-free assets15 and
therefore at a significant opportunity cost and at worst real economic losses.
While the regulator provides guidelines on the estimation of 𝑝 based on
the rating given by external agencies, it also offers some liberties and allow
this key quantity to be modelled internally using the so-called advanced
internal ratings-based (a-irb) approach.

Most approaches to credit risk treat the problem as a classification prob-
lem, predicting either default or no-default. However this approach has
serious drawbacks as it relies on discretizing time and deciding arbitrarily
to classify something as a default or non-default based on a single time
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16: Or “death” vs “no-death” or
“failure” vs “no-failure”.

Figure 1.5: Memento mori.
For Benjamin Franklin, “Noth-
ing can be said to be certain, ex-
cept death and taxes”. We ask the
reader to add defaults for the re-
mainder of this thesis.

horizon 𝜏. In this approach, a company defaulting after 𝜏 + 1 days is con-
sidered as a good payer, a very arguable design decision. For this reason,
and because the exact same problems are encountered in the medical set-
ting, we adopt a different approach: instead of predicting a binary event,
“default” vs “non-default”16 we predict the time until default, or more gen-
erally time-to-event, by adopting the point of view that all companies end
up defaulting and we only potentially have not been able to observe it.

1.2 Censored Time-to-Event
Predicting if an event happens can be tackled from multiple perspectives
of which the simplest is to treat the problem as a binary classification
problem. After choosing a temporal threshold 𝜏 it is possible to reframe
most problems involving the survival of an individual, living or not, as
the classification problem “did the event happen before 𝜏 or not?”. This
simplistic approach can be well adjusted to many problems where the act
of choosing a threshold is in itself natural, for example for a specific loan
with a predetermined duration 𝜏, but is often wildly inadequate in practice.
Most problems cannot be naturally thresholded; for a perpetual credit
line if one fix the threshold at 𝜏 does it mean that clients defaulting at
𝜏 + 1 are good clients? In the medical setting, if the goal is to compare
two treatments where should 𝜏 be fixed? For a large 𝜏 you potentially
only observe natural deaths or even nothing at all if the study is too short
and for small a 𝜏 you incur the risk of not having waited long enough to
observe anything. Moreover, by treating the problem as a classification
task, we are quickly confronted to problems of imbalances, as luckily most
clients do not default and most people do not die, which results in hard
classification instances.

For all these reasons and more, it is therefore more natural to treat the
problem of predicting an event as the problem of predicting a time-to-
event, that is learning the distribution of the times at which the event of
interest happens. If we denote the time-to-event by 𝑌 ∈ ℝ+, following
the usual notation of regression, which we suppose by convention to be
a positive random variable, we then wish to estimate the distribution
of 𝑌 through one of the multiple objects that define it. As the subject
is called survival analysis and we are interested in the deaths, failures
and defaults and not in the period of time where nothing happens, we
usually chose to study the survival function 𝑆(𝑡) = ℙ(𝑌 > 𝑡) instead of the
cdf 𝐹(𝑡) = 1 − 𝑆(𝑡). The survival function plays here the role of natural
extension of the previous approach by thresholding as each instance 𝑆(𝜏)
represents a binary classification problem, we therefore here solve all such
instances at the same time. Of course other quantities of interest can be
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17: The unusual notation 𝑝
instead of the more common 𝑓
for the density will be used in
this thesis.

18: For example when a medical
study ends.

19: It is possible to also define
left censoring as well as left/right
truncation. Most of the results
presented here can be straigh-
forwardly, if not with growing
technical pain, be adapted to the
more general cases.

modelled given the particularities of the problem as described later in
fig. 3.1. In particular in the case where 𝑌 admits a density 𝑝(𝑡),17 we can
define the instantaneous hazard

𝜆(𝑡) = lim
Δ𝑡→0

ℙ (𝑌 ∈ [𝑡, 𝑡 + Δ𝑡] ∣ 𝑌 > 𝑡)
Δ𝑡

,

which relates to the survival naturally through the relation

𝜆(𝑡) = 𝑝(𝑡)
𝑆(𝑡)
.

Similarly, the integrated or cumulative hazard Λ(𝑡) = ∫𝑡
0
𝜆(𝑡) d𝑡 is often

studied because of the relation

𝑆(𝑡) = exp(−Λ(𝑡)) ,

which trivially derives from the definition of 𝜆. Note that all those quanti-
ties uniquely define the law of𝑌 and can therefore be used interchangeably.

While the time-to-event formulation is particularly well suited to our
problem, we still have unfortunately have to deal with a time horizon.
Not only are our observations necessarily stopped at the current moment,
or at least when we stopped gathering data,18 but some observations are
unobserved for reasons beyond our control such as a patient dropping from
a study or a company merging with another and effectively “disappearing”.
In reality we therefore can rarely observe 𝑌, the real variable of interest,
and instead only observe some time 𝑇 which we call right censored such
that

𝑇 = min(𝑌, 𝐶)
where 𝐶 ∈ ℝ+ is a nuisance random variable, playing a symmetrical role
to 𝑌 and here called the censoring variable, which encompasses all the
reasons for which our variable of interest can be unobserved such as the
arrow of time, the end of the study, an observation being taken out of the
dataset etc. We also assume that we know whether the time we observe is
censored or not through the censoring indicator 𝛿 defined by

𝛿 = 𝟙𝑌≤𝐶 = {
1 if 𝑌 ≤ 𝐶
0 otherwise.

,

as otherwise there would be no hope of estimating any useful quantity.
Our dataset, represented in fig. 1.6, therefore consists of observations of
the tuple (𝑇, 𝛿) instead of 𝑌.

This setting, the flagship setting of survival analysis,19 as been extensively
studied in the statistical literature (see Fleming and Harrington [1991]; or
Gill [1994], for an excellent overview of the methods involved to derive
estimators) which has focused on the asymptotic properties of the various
estimators of 𝑆, Λ.
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End of Time

Figure 1.6: Right censored
survival data.

20: Which often is the case. In
the medical setting we are for
example interested in comparing
𝑆1 to 𝑆2, the survival functions
of two competing treatments, in
order to prove some hypothesis
of the type 𝑆1 > 𝑆2 or at least
𝑆1 ≠ 𝑆2

1.2.1 Estimators of the Survival
As the field of survival analysis is too vast to summarize here, we will
only introduce briefly the key estimator of the survival that will be the
inspiration for later chapters. A rigorous survey of the literature is deferred
to the relevant chapters. However, if the reader is interested in survival
analysis, we recommend Klein and Moeschberger (2003); D. R. Cox and
Oakes (1984) for a general overview as well as the previously mentioned
course of Gill (1994) which motivates the product-integral formulation.

In the case where the object of interest is the survival 𝑆,20 had we ob-
served the real variable of interest 𝑌 we could easily estimate 𝑆 by

𝑆𝑛(𝑡) =
1
𝑛

𝑛

∑
𝑖=1
𝟙𝑌𝑖>𝑡,

which by Glivenko-Cantelli converges uniformly to the true survival. Here
we only observe (𝑇, 𝛿) and the corresponding estimator would be

̄𝑆𝑛(𝑡) =
∑𝑛𝑖=1 𝟙𝑇𝑖>𝑡,𝛿𝑖=1
∑𝑛𝑖=1 𝟙𝛿𝑖=1

,

which is biased and do not converge to the value of interest.
However, after discretizing the time at each observation𝑇𝑖, we can apply

Bayes formula after noticing that locally, inside an interval [𝑇[𝑖], 𝑇[𝑖+1]]
where 𝑇[𝑘] is used to mean “the 𝑘-th largest value of (𝑇𝑖)” (when ignoring
ties for simplicity), we can write the conditional probability of an event
happening in this interval given that nothing happened until now as if no
censoring was present. That is, if we denote by𝑚𝑖 the number of events
in the 𝑖-th interval, 𝑛𝑖 the number of at risk individuals, that is alive and
non-censored and 𝑐𝑖 the number of censored individuals at the beginning
of the interval i.e. at 𝑇𝑖 then

ℙ(𝑌 ≤ 𝑇[𝑖+1] ∣ 𝑌 > 𝑇[𝑖]) =
𝑚𝑖
𝑛𝑖 − 𝑐𝑖
.
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21: Or kernel.

We can therefore construct iteratively an estimator of 𝑆 of the form

̂𝑆𝑛(𝑡) = ∏
𝑖|𝑇𝑖≤𝑡
(1 − 𝑚𝑖
𝑛𝑖 − 𝑐𝑖
) ,

or rewritten under several different equivalent forms

̂𝑆𝑛(𝑡) =
𝑛

∏
𝑖=1
(1 −

𝛿[𝑖]
𝑛 − 𝑖 + 1

)
𝟙𝑇[𝑖]≤𝑡

= ∏
𝑖=1,…,𝑛
𝑇[𝑖]≤𝑡

( 𝑛 − 𝑖
𝑛 − 𝑖 + 1

)
𝛿[𝑖]
.

This estimator, often called the Kaplan-Meier estimator (Kaplan and Meier
[1958]), can be shown to be consistent. Similar results can be obtained for
the cumulative hazard Λ with the Nelson-Aalen estimator (Nelson [1969];
Aalen [1978])

Λ̂𝑛(𝑡) =
𝑛

∑
𝑖=𝑖

𝛿𝑖𝟙𝑇𝑖≤𝑡
∑𝑛𝑗=1 𝟙𝑇𝑗>𝑇𝑖

.

While we have here ignored the covariates 𝑋 and therefore the con-
ditioning on 𝑋, those estimators are of particular interest to us because
of the ease of introducing this conditioning: by introducing local aver-
aging around𝑋, by example through kernels, we can obtain conditional
estimators at𝑋 = 𝑥 of the form

Λ̃𝑛(𝑡 ∣ 𝑋 = 𝑥) =
𝑛

∑
𝑖=𝑖

𝛿𝑖𝟙𝑇𝑖≤𝑡𝐾(𝑥 − 𝑋𝑖)
∑𝑛𝑗=1 𝟙𝑇𝑗>𝑇𝑖𝐾(𝑥 − 𝑋𝑗)

,

where 𝐾 is usually a probability density function21 symmetric around 0.

1.2.2 Parametric and Semi-Parametric Models
A surprising observation which unlocks a vast number of techniques
available in the uncensored setting lies in the conditional decomposition
of the likelihood of the observations. If we assume for a moment that 𝑌
and𝐶 are independent, then we can write the likelihood of the observation
𝑖 as

ℙ (𝑇 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝛿 = 𝛿𝑖 ∣ 𝜃)

= ℙ (𝑇 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝛿 = 1 ∣ 𝜃)𝛿𝑖

⨯ ℙ (𝑇 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝛿 = 0 ∣ 𝜃)1−𝛿𝑖

= ℙ (𝑌 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝐶 ≥ 𝑇 ∣ 𝜃)𝛿𝑖

⨯ ℙ (𝐶 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝐶 < 𝑇 ∣ 𝜃)1−𝛿𝑖

= (𝑝 (𝑇𝑖 ∣ 𝜃) 𝑆𝐶(𝑇𝑖−))
𝛿𝑖 (𝑝𝐶(𝑇𝑖)𝑆(𝑇𝑖 ∣ 𝜃))

1−𝛿𝑖 , (1.1)
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Figure 1.7: Individual Contribu-
tion of Censored and Uncensored
Observations.

where 𝜃 ∈ Θ is here the parameter describing the family of interest, that
is the distribution of the survival and 𝑝𝐶, 𝑆𝐶 are the density and survival
of the censoring variable. The previous quantity in eq. (1.1) involves both
the objects of interest 𝑝 and 𝑆 but also the nuisance quantities 𝑝𝐶, 𝑆𝐶
which seems at first glance a problem. However as𝐶 is precisely a nuisance
variable and therefore irrelevant to us; it is not useful to model it and it
therefore does not involve 𝜃 in any way. As such, after ignoring those
quantities by treating them as constants, we can write the likelihood as

ℒ ∝
𝑛

∏
𝑖=1
𝑝(𝑇𝑖 ∣ 𝜃)𝛿𝑖𝑆(𝑇𝑖 ∣ 𝜃)1−𝛿𝑖 . (1.2)

The quantity in eq. (1.2) is often called the partial likelihood, and can be
directly used for maximum likelihood estimation as the hidden constant
that absorbed the nuisance quantities do not modify the solution in any
way. The previous derivation of the partial likelihood is a fairly natural
consequence of the very specific structure of the right censored problem of
survival analysis as can be seen in fig. 1.7; as it simply expresses that when
the observation is the true quantity we can update our knowledge in the
usual way meanwhile when the observation is censored the most we can
learn is “the true time-to-event is greater than the current observation”.

As eq. (1.2) makes maximum likelihood estimation possible it is possible
to approach the survival analysis problem through parametric modelling,
by taking care of choosing a parametric family with support in ℝ+ which
is for example the approach we will use in chapter 3. Because of its inti-
mate link to medical research, it is common in survival analysis not to be
interested by 𝑆 itself but by the comparison of 𝑆1 and 𝑆2, the cause specific
survivals of two populations, for example corresponding to a reference
or placebo treatment and a new treatment or more generally of 𝑆(⋅ ∣ 𝑋1)
compared to 𝑆(⋅ ∣ 𝑋2). In this case, semi-parametric approaches have
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22: The Kaplan-Meier estimator
of the previous paragraph can
actually be derived by non-
parametric maximum likelihood
estimation too.

enjoyed great success of which the proportional hazard model of D. R. Cox
(1972) is certainly the most iconic representant. In the proportional hazard
model, often referred to as Cox’s model; the hazards are supposed to be
proportional such that

𝜆(𝑡 ∣ 𝑋) = 𝜆0(𝑡) exp(𝜃
⊺𝑋) ,

where 𝜆0 is intentionally kept as nonparametric and entirely general. The
partial likelihood can then be written as

∑
𝑖∶𝛿𝑖=1
(𝜃⊺𝑋𝑖 − log ∑

𝑗∶𝑇𝐽≥𝑇𝑖

exp(𝜃𝑋𝑗)) ,

which surprisingly do not involve 𝜆0 in any way and can therefore by
learned with ease. Note, however, that if 𝜆(⋅ ∣ 𝑋) is of interest and not
solely 𝜆(⋅ ∣ 𝑋1)/𝜆(⋅ ∣ 𝑋2), then it is actually possible to estimate 𝜆0 non-
parametrically (Breslow [1975]).

Similarly, there is a rich literature on regression models such as the
accelerated failure time (aft) model (Buckley and James [1979]) where 𝑌
is modelled as

log(𝑌) = − log(𝑓(𝑋)) + 𝜖,

with 𝜖 a baseline distribution, or Poisson regression.22 Those many meth-
ods, however, have significant flaws we would like to alleviate. Most of
the results from the statistical literature make the assumption that the
estimated model and the true generative model are in the same class which
is, of course, never true but was often accepted as unavoidable in order to
derive interesting theoretical results. We would, however, prefer results
that match the reality of the data; that is, bounds that do not assume the
model to be correct, even if the resulting bounds are necessarily less tight.
Similarly, most results deal with convergence, and its characterization, in
the asymptotic regime. While the results obtained are very powerful, those
are of little utility to practitioners confronted with finite samples. Those
last two remarks form the basis of statistical learning theory, or what most
people have come to refer to as machine learning. This work therefore tries
to bridge the world of survival analysis with that of machine learning in
order to bring the type of theoretical guarantees practitioners in machine
learning have come to expect, to the existing tools of survival analysis.

1.3 Censored Prediction in High-Dimension
As mentioned in passing in the previous section, survival analysis as a
field is mostly born out of necessity to describe and understand natural
phenomenons. The small historical presentation of the field given in
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23: We use here simpler to mean
that we can expect in practice the
results to be better on this task
using the same data, compared
to first estimating the distribu-
tion and then forming a plugin
regressor.

appendix B gives several such examples of how models can be used to
help build a better understanding of the world in order to take decisions.
This approach to modelling is certainly the most natural to most as it is
both the historical one but more importantly the one people have been
exposed to in their life. Describing nature is, of course, of the foremost
importance to epidemiologists, virologists, econometrists or any other
scientific field but generally industrial practitioners are often satisfied with
much simpler but practical results. When trying to shoot a basketball
through a hoop it is certainly useful to understand mechanics from first
principle in order to know that the ball will follow a parabola, but it is
more than sufficient to just predict that the ball will just go that way if you
throw it this hard without understanding anything about Newton’s laws of
motion. The same principle applies to many analytical fields and in our
case medicine and finance. If the goal is simply to predict a time-to-event,
and not to understand the reasons behind this event, then it is sufficient
to adopt a predictive point of view. We call here prediction the task of
guessing, that is building an estimator of some quantity 𝑌 from the input
or characteristics𝑋 on the hope that 𝑌 = 𝑓(𝑋). For our basketball player,
𝑋 is the angle and force of the launch while in themedical setting,𝑋would
be the characteristics of the patient. In this point of view, the function 𝑓
is some abstracted black box encompassing all the dynamics leading to
the result as only the result 𝑌 = 𝑓(𝑋) is of interest. We have previously
given the example of the Cox regression model, where the survival of some
individual is modelled through the instantaneous hazard rate 𝜆 such that

𝜆(𝑡 ∣ 𝑋) = 𝜆0(𝑡) exp(𝛽
⊺𝑋) .

While this model can and is often used as a predictive model, its primary
reason of being is the study of the relative impact of the different variables
through the study of the coefficients 𝛽𝑖; the goal is to understand the
mechanisms leading to death. On the other hand, if the goal is only to
guess the quantity 𝑌 = 𝑓(𝑋) then it is sufficient and simpler23 to decide
on some criterion of the goodness of fit ℒ in order to try to find the best
possible 𝑓 given the data for this criterion. Mathematically, we can express
this vague goal as solving

argmin
𝑓
𝔼 [ℒ (𝑌, 𝑓(𝑋))] , (1.3)

which is often referred to as the risk minimization problem. This formu-
lation, while at first glance unnatural, actually encompasses many of the
usual questions about the data one can have depending on the choice of
ℒ. For example, taking ℒ to be the squared loss (𝑌 − 𝑓(𝑋))2 leads to the
solution of eq. (1.3) being the conditional expectation 𝔼[𝑌 ∣ 𝑋], while the
absolute value |𝑌−𝑓(𝑋)| leads to the median. Similarly, quantities like the
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24: Respectively by choosing the
pinball loss and the cross-entropy
loss.

25: As well as ℛ𝑛( ̂𝑓𝑛) being small
but this is implicit given that it is
explicitly constructed that way.

quantiles or the conditional probability can also be obtained in a similar
manner by choosing appropriate losses ℒ24 and the art of choosing the
correct loss for the task of interest attracts considerable research atten-
tion. We emphasize that estimation i.e. learning the conditional density or
even conditional expectation is not the goal pursued here, and is instead
only prediction by learning a predictive rule 𝑓 with good generalization
properties. While the same objects may be involved in both objectives,
the objective in itself is not the same as illustrated in eq. (1.4) in the case
where the predictive function can be written as an integral which is for
example the case for the mean.

∫𝜑(𝑦, 𝑥) 𝑝(𝑦 ∣ 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Objective

d𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

By-Product

𝑓(𝑥) = ∫𝜑(𝑦, 𝑥) 𝑝(𝑦 ∣ 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
By-Product

d𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Objective

. (1.4)

While many of the tools used for prediction are the same as those used in
the more traditional approaches, the stark difference in the question being
answered warrants different types of theoretical results. As said earlier,
we are interested in solving the problem of eq. (1.3), that is, finding the
best on average possible 𝑓 from a familyℱ of potential functions where
our criterion depends on the end goal. Of course, we do not know the
distribution of (𝑌,𝑋) or even the true family of function that encompasses
the true 𝑓, and therefore cannot directly solve eq. (1.3). We can, however,
solve the empirical version of this problem from the data we have at hand,
that is

argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1
ℒ (𝑌𝑖, 𝑓(𝑋𝑖)) , (1.5)

which we call the Empirical Risk Minimization (erm) approach. Given
that we do not solve the right problem but only an empirical and restricted
version of it, it seems legitimate to ask what guarantees one have that the
solution obtained is a good solution. This last question is the foremost
problem of statistical learning theory and has been approached undermany
angles, we are, however, taking here the probably approximately correct
(pac) approach: we say that our solution ̂𝑓𝑛 of eq. (1.5) is good if it is good
according to eq. (1.3) with high probability. That is, given that we only
know to compute

ℛ𝑛( ̂𝑓𝑛) = min
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1
ℒ (𝑌𝑖, 𝑓(𝑋𝑖)) ,

that the quantity
|ℛ𝑛( ̂𝑓𝑛) − ℛ(𝑓∗)| , (1.6)

is small,25 whereℛ(𝑓∗) is the minimum of eq. (1.3). Many results of the
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Learn on Censored Learn on Observed Learn on Reweighted Figure 1.8: Learning a linear
regression on the raw censored
data, the fully observed data only
and the reweighted observed
data.

form exist, as will be seen in §2.1 but one glaring issue remains that make
the erm approach unsuitable for survival analysis: in eq. (1.5) we do not
observe 𝑌𝑖. It is, however, possible to adapt eq. (1.5) to the survival setting
and prove results similar to those already existing in statistical learning
theory without censoring.

1.3.1 Censored Prediction
In our setting 𝑌 is unobserved and only (𝑇, 𝛿), the censored variable as
well as censoring indicator, are observed instead. We show, following the
seminal series of Stute (1996, 1993a,b, 1995a,b, 2003); Stute and J.-L. Wang
(1993) and work of Dabrowska (1989) that the unobservable quantity of
eq. (1.3) can be replaced by the reweighted, but mathematically equivalent

argmin
𝑓
𝔼[ 𝛿
𝑆𝐶(𝑇− ∣ 𝑋)

ℒ (𝑇, 𝑓(𝑋))] , (1.7)

and corresponding empirical version

argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

ℒ (𝑇𝑖, 𝑓(𝑋𝑖)) . (1.8)

Of course, while the unobservable variable 𝑌 has been replaced by the ob-
servable quantities 𝑇 and 𝛿, we now instead involve the unknown survival
function 𝑆𝐶. By solving this new reweighted empirical problem instead of
relying on the whole censored dataset or only the fully observed individ-
uals, we are able to eliminate the estimator bias which would otherwise
result in an underestimation, as can be seen in fig. 1.8. While this change
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seems pointless as we exchanged an unknown quantity for another, we
know how to estimate 𝑆𝐶 as seen in §1.2 and we can instead study

argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖
̂𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

ℒ (𝑇𝑖, 𝑓(𝑋𝑖)) . (1.9)

In chapter 2, we show that when using a kernel estimator ̂𝑆𝐶 of 𝑆𝐶,
we can derive non-asymptotic and nonparametric bounds of the gener-
alization error of eq. (1.6) similar to those of the standard, uncensored,
statistical learning literature. As ̂𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) itself is a random variable
involving all the (𝑇𝑖, 𝑋𝑖) of the training data, here under the form of a sum
of independent estimators, the ratio

𝛿𝑖
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

ℒ (𝑇𝑖, 𝑓(𝑋𝑖)) ,

is not independent and identically distributed which renders most of
the proof techniques involving empirical sums of i.i.d. variables invalid.
Instead we rely on the fact that the previous quantity can be written as a
ratio of sums in order to linearize it and subsequently treat it as a𝑈-statistic,
i.e. a generalization of empirical means, onwhich concentration results can
be applied. This enables us to prove in Theorem 2.9 generalization bounds
on the censored erm problem that are similar to those in the completely
observed case:

Theorem (Uniform control of the excess risk). Suppose that Assump-
tions 2.1 and 2.4 are fulfilled. There exist constants ℎ0,𝑀1,𝑀2 and𝑀3 that
depend on (𝐴, 𝑣),𝑀Φ, 𝐿,𝐾 and 𝑏 only, such that, for all 𝑛 ≥ 2 and 𝜀 ∈ (0, 1),
the event

|ℛ( ̃𝑓𝑛) − ℛ(𝑓⋆)| ≤ 𝑀1 (√
log (𝑀2/𝜀)
𝑛
+
| log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) ,

occurs with probability greater than 1 − 𝜀 provided that ℎ ≤ ℎ0, 𝑛ℎ2𝑑 ≥
𝑀3 |log(𝜀ℎ𝑑)|.

Moreover, we prove experimentally in §2.5 that the performance ob-
tained on real data by the proposed framework match those expected from
the theoretical bounds.

These results, which represent the main contribution of this thesis,
have been presented preliminarily at the Machine Learning for Health
Workshop at NeurIPS 2018 (Ausset, Portier, and Clémençon [2018]) and
are currently under final review for publication at JMLR at the time of
writing.



1 Introduction 16

Papers of chapter 2

Guillaume Ausset, François Portier, and Stéphan Clémençon (2018).
“Machine Learning for Survival Analysis: Empirical Risk Minimiza-
tion for Censored Distribution Free Regression with Applications”.
In: NeurIPS ML4H Workshop. Montreal, Canada
@ i n p r o c e e d i n g s { a u s s e t M a c h i n e L e a r n i n g S u r v i v a l 2 0 1 8 ,
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Guillaume Ausset, Stéphan Clémençon, and François Portier (2021a).
“Empirical Risk Minimization under Random Censorship”. under
revision in Journal of Machine Learning Research. arXiv: 1 9 0 6 . 0 1 9 0 8
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}

1.3.2 Flexible Estimators of the Survival
While the results presented in chapter 2 give strong theoretical justifications
for the use of ipcw erm, the performance still depends heavily on the
quality of the weights 𝛿𝑖/𝑆𝐶(𝑇𝑖|𝑋𝑖) and therefore of the estimator of 𝑆𝐶.
Beyond the use in ipcw regression, estimators of the survival are of interest
to the survival community by themselves andmany flexible such estimators
have been proposed through the years. In chapter 3, based on Ausset,
Ciffreo, et al. (2021), we study a particular type of estimator of 𝑆 constructed
from a generative model of the variable of interest, i.e. 𝑌 in the general
survival setting or 𝐶 for the ipcw weights, with a tractable likelihood. By
modelling 𝑌 as the transformed variable

𝑌 = 𝑚𝜃(𝑍,𝑋), (1.10)

where𝑚𝜃 is a highly flexible family of neural networks parametrized by
𝜃 ∈ Θ and 𝑍 is a simple known distribution. We are able to find the

https://arxiv.org/abs/1906.01908
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optimal choice of𝑚𝜃 by maximizing the censored log-likelihood
𝑛

∑
𝑖=1
(𝛿𝑖𝑝𝑌,𝜃 (𝑇𝑖 ∣ 𝑋𝑖) + (1 − 𝛿𝑖) 𝑆𝑌,𝜃 (𝑇𝑖 ∣ 𝑋𝑖)), (1.11)

where𝑝𝑌,𝜃 and 𝑆𝑌,𝜃 are the density and survival function of𝑌 as parametrized
by eq. (1.10). The parametrization given by eq. (1.10) is a type of generative
model first introduced under the name normalizing flow by Rezende and
Mohamed (2015). Its usefulness resides in the fact that 𝑝𝑌,𝜃 can be derived
from 𝑝𝑍 by means of the change of variable formula

log𝑝𝑌,𝜃(𝑡 ∣ 𝑋) = log𝑝𝑍(𝑧) − log|det
𝜕𝑚𝜃
𝜕𝑧
| .

Similarly, we show in chapter 3 that it is also possible to retrieve the survival
𝑆𝑌,𝜃 by adopting the continuous formulation of eq. (1.12) (see R. T. Q. Chen
et al. [2018]),

𝜕
𝜕𝑡
[

z𝜃(𝑡, 𝑋)
log𝑝(𝑦 ∣ 𝑋) − log𝑝(z𝜃(𝑡, 𝑋))

] = [

[

𝑚𝜃(z𝜃(𝑡, 𝑋), 𝑡, 𝑋)

− tr 𝜕𝑚𝜃
𝜕z
]

]
,

[
z𝜃(1, 𝑋)

log𝑝(𝑦 ∣ 𝑋) − log𝑝(z𝜃(1, 𝑋))
] = [
𝑦
0],

(1.12)

making it possible to compute as well as differentiate (see Rackauckas, Ma,
Dixit, et al. [2018], for differentiability of solutions of ordinary differential
equations (odes)) all the quantities present in eq. (1.11).

Despite the high computational cost of the method proposed we show
that compared to existing neural approaches such as DeepCox (Nagpal
et al. [2021]) or DeepHit (C. Lee, Zame, et al. [2018]; C. Lee, Yoon, and
Schaar [2020]), this continuous normalizing flow (cnf) approach per-
forms competitively on classical regression tasks but also enables new
applications. As a generative model, the cnf approach gives the ability to
efficiently sample conditional observations, a very useful characteristic in
finance where stress-tests and simulations are regulatory requirements;
but also for applications where complex dependencies have to be modelled
and simulated by means of Monte Carlo. This last application, given its
particular relevance to finance is studied in greater details in chapter 5.

While the advantages of very flexible, and very expensive, neural net-
work based generative models of the survival are undeniable, the compu-
tational cost can be hard to justify when considering the relatively high
performance of simpler, and nearly free in comparison, methods such as
random survival forest (rsf) (Ishwaran and Kogalur [2007]) or even Cox
models (D. R. Cox and Oakes [1984]); even if one could argue that most
of the cost is incurred during training and amortized during inference.



1 Introduction 18

26: But with significant overlap.

27: Even then, some people see
this task as a self-supervised prob-
lem, that is where the covariates
are 𝑋 and the dependant variable
also 𝑋.

28: Incidentally this is equivalent
to maximizing the variance on
the projected subspace.

Despite the fact that the cnf method is inherently more expensive, it is
still possible to mitigate the computational burden by reducing the size of
the neural network, this bandaid can work only if the number of dimen-
sions of 𝑋 itself is lowered at the same time. Therefore, in order for the
method proposed to be of practical interest, a robust way of reducing the
dimension of𝑋 is needed.

Papers of chapter 3
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b o o k t i t l e = { { { D S A A } } ’ 2 1 } ,
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a n d C l é m e n ç o n , S t é p h a n a n d P o r t i e r , F r a n ç o i s a n d P a p i n , T i m o t h é e } ,
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}

1.3.3 Dealing with High Dimension
The final major contribution of this thesis presented in chapter 4 is a
response to the previously mentioned need for a robust dimension reduc-
tion technique. The goal of dimensionality reduction is to find a lower-
dimensional space which captures most of the information present in the
original space. The very notion of information is left here intentionally
fairly vague as, depending on the task or the specific needs of the problem
of interest, it can change drastically thus leading to very different notions
of reduction of dimension.

We can very roughly divide the types of tasks of interest in two dis-
tinct26 groups: unsupervised and supervised. By unsupervised we mean
tasks where the object of interest is𝑋 itself which is considered to be the
only quantity observed.27 Without any auxiliary information, the most
natural way of framing the problem is therefore simply to view it as a
reconstruction problem that is finding a lower-dimensional space obeying
some additional constraints such that this new space minimizes some
notion of distance to the original space. This is for example the approach
taken by principal components analysis (pca) where the square loss of
a projection onto a subspace of dimension 𝑙 is minimized.28 Similarly,
variational autoencoders (vaes) find the latent representation 𝑍 of lower
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𝑋 Encoder 𝑍 Decoder �̂�

Figure 1.9: Simplified vae.

𝑋 Encoder 𝑍 FC 𝑌

Figure 1.10: Last layer of dnn as
representation.

29: This is not an exhaustive
review, more details are given
in chapter 4. Note that while
all these techniques can be seen
from a pure reconstruction point
of view, i.e. pure optimization
problems, they also admit proba-
bilistic interpretations.
30: The real formulation of vaes
is probabilistic and variational in
essence as the formulation given
here will overfit the data.
31: lda is often seen as a classi-
fication algorithm but it can be
used for dimension reduction.

dimension 𝑙 by jointly learning the embedding function or encoder enc
and decoding function dec that minimizes the reconstruction error

‖𝑋 − dec ∘ enc(𝑋)‖ ,

which can be seen as a generalization of pca, when taking enc = 𝑃 a
projection and dec = id29 as illustrated in fig. 1.9.30 On the other hand, su-
pervised dimensionality reduction techniques are concerned with finding
good representations of𝑋 when (𝑋, 𝑌) is observed and the prediction of
𝑌 given𝑋 is the task of interest. It is for example possible to see linear dis-
criminant analysis (lda) as a supervised extension of pca31 which instead
of finding the projection that maximizes the variance, finds the projection
that maximizes the class separation. Similarly, by analogy with the vae
approach, instead of finding a representation suitable for reconstruction,
it is usual in the supervised setting to find a representation suitable for
prediction, or classification, by simply taking the last layer of a deep neural
network (dnn), before the fully connected (fc) output layer, as our lower
dimensional embedding of interest as represented in fig. 1.10.

Another approach to the supervised problem is to consider as important
the variables that have an impact on the output

𝑌 = 𝑓(𝑋) + 𝜀,

which fairly naively can be thought as finding the direction of non-zero
derivatives. If we limit ourselves solely to variable selection, that is restrict-
ing the possible directions only to the axes, then the problem is simply of



1 Introduction 20

finding the non-zero elements of the gradient. This approach has been
studied and justified in the literature under the single and multi index
framework where

𝑌 = 𝑓(𝑇𝑋) + 𝜀,

with 𝑇 a projection matrix. Under this model it is clear that the effective
dimension reduction (edr) subspace defined by 𝑇 is spanned by the gra-
dient ∇𝑟 of 𝑟(𝑥) = 𝑓(𝑇𝑥). Several approaches to this specific problem
have already been proposed in the literature and are described in detail in
§4.1 but non combine non-asymptotic and uniform bounds on the error
of both the gradient and regression function itself with a 𝑘-nn approach
when the gradient is supposed sparse. The 𝑘-nn approach is particularly
attractive in practice as it is not only easy to calibrate and understand for
laymen, but also prevents any pathological cases where too few examples
are present in a chosen neighbourhood. We give in chapter 4 a local linear
least absolute shrinkage and selection operator (lasso) formulation of the
problem of the form

argmin
(𝑟,𝛽)∈ℝ𝑑+1

∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑌𝑖 − 𝑟 − 𝛽

⊺(𝑋𝑖 − 𝑥))
2 + 𝜆‖𝛽‖1, (1.13)

and show in Theorem 4.1 that it is possible to exploit the supposed sparsity
of the gradient to improve the bounds on the error, with similar results on
the regression function itself in Theorem 4.2.

Theorem. Suppose that Assumptions 4.1 to 4.4 are fulfilled. Let 𝑛 ≥ 1
and 𝑘 ≥ 1 such that 𝐶𝑘 ≤ 𝐶0 and take

𝜆 = 𝐶𝑘 (√2𝜎2
log (16𝑑/𝛿)
𝑘
+ 𝐿𝐶2𝑘) .

Then, we have with probability larger than 1 − 𝛿,

‖∇̃𝑘𝑟(𝑥) − ∇𝑟(𝑥)‖2 ≤ 24
2√|𝒮𝑥| (𝐶−1𝑘 √

2𝜎2 log (16𝑑/𝛿)
𝑘

+ 𝐿𝐶𝑘) ,

as soon as
𝐶1 |𝒮𝑥| log(

𝑑𝑛
𝛿
) ≤ 𝑘 ≤ 𝐶2𝑛,

where ∇̃𝑘𝑟(𝑥) is the second component of the solution of eq. (1.13), 𝐶0, 𝐶1, 𝐶2
and 𝐿 are universal constants, 𝐶𝑘 is a constant defined in detail in Theo-
rem 4.1 and |𝒮𝑥| is the number of non-zero components of ∇𝑟(𝑥).

Most of the examples of dimension reduction given earlier, such as pca
or lda, assume that the important variables are the same for all individu-
als and are therefore treated as a preprocessing step applied to the whole
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dataset before any further analysis. There is, however, no reason for such
a strong hypothesis to be true: if the dataset includes for example men
and women, it seems dubious at best to think that the same variables are
important for both sexes and an adaptive variable selection method would
be expected to perform better. Similarly, when comparing the character-
istics of clients of a loan, it seems desirable to take into account different
characteristics if the client is a multinational or a small local company. As
our method is local, that is the gradient is estimated at a specific 𝑥 and
therefore retrieves the variables of importance in a neighbourhood of 𝑥, it
is possible to select different relevant variables in different regions of the
space. In §4.5, not only do we show how to find globally important vari-
ables by aggregating the gradients of all observations but we also propose
a tree-based method exploiting the local gradient information in order to
improve performance.

Finally, while the theoretical analysis in the chapter is done while mo-
mentarily ignoring all forms of censoring for reasons of simplicity, it is still
an erm problem on which we can apply the ipcw approach of chapter 2,
for example to identify the genes responsible for the survival of cancer as
done in §4.5.2.

Papers of chapter 4

Guillaume Ausset, Stéphan Clémençon, and François Portier (2021b).
“Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymp-
totic Bounds and Applications”. In: Proceedings of the 24th Inter-
national Conference on Artificial Intelligence and Statistics. Ed. by
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1.4 Outline of this Manuscript
This dissertation is organized as follows:

• Chapter 2 deals with the empirical risk minimization framework
in the presence of censoring. Non-asymptotic and uniform upper
bounds of the generalization error are proven, while the end of the
chapter is dedicated to numerical experiments to justify the validity
of the approach beyond the theoretical results.

• Chapter 3 introduces normalizing flows for survival analysis, a gen-
erative model with a tractable likelihood. Several applications serve
as an example of the utility of such an approach in the classical
survival setting while the motivation for the generative formulation
is studied in greater details in chapter 5.

• Chapter 4 treats of the problem of high dimension through the scope
of variable selection. An estimator of the gradient is introduced
and non-asymptotic bounds on the error of both the supposedly
sparse gradient and the regressor are derived. As the gradient is
itself useful beyond simple variable selection, several examples of
zeroth-order optimization as well as disentanglement are given.

• Chapter 5 treats of survival analysis in finance through the specific
case of securitization, one of the core business of BNP Paribas CIB.
We motivate the generative model introduced in chapter 3 through
the use of hierarchical multilevel modelling.

Beyond the main text which introduces the contributions of this thesis,
some additional details are given in the appendix.

• Classical proofs not strictly needed for the comprehension of the
main results are given in appendix A for reference.

• An historical overview of survival analysis is given in appendix B as
a distraction and intermission to the technical proofs.

• Appendix C contains a French translation of this introduction.
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34: Or fitting them, if more fa-
miliar with the machine learning
terminology

35: Hopefully without offend-
ing anybody, as there are as
many definitions of statistics
and machine learning as there
are statisticians and machine
learners.

Prediction and Censoring 2
2.1 Introduction
We have quickly introduced the survival analysis setting in the previous
chapter and given a quick overview of the mathematical objects involved.33
We have however, until now, mostly concerned ourselves with construct-
ing estimators of the density, survival or hazard, and then calibrating34

them in order to obtain the parameters corresponding to the best possible
representation of the hypothesized distribution of the observed censored
data. We will refer,35 to the approach of first making a hypothesis on the
distribution of the data and then finding the best parameters in order
to have our hypothesis and the observed data be in agreement with the
goal of understanding the process that generated the data, as the statistical
approach. We have started by describing the statistical approach in the
previous chapter as it is not only historically the first approach developed
but more importantly because it is, more often than not, the approach that
corresponds most closely with the way scientists work, and is capable of
answering the questions those same scientists have. While we frame math-
ematically our problem as predicting the time of death of a patient, this is
often not of any direct interest to the researcher. A medical researcher or a
biostatistician is probably more interested in understanding the causes and
mechanisms that lead to the death, than the death itself, and is therefore
more interested in the inferred parameters of their hypothetical law than
the mean, mode or any other output of said law. A medical researcher
working on the survival of trauma patients suffering from major blood
loss may for example decide to model the survival of patients given their
characteristics𝑋𝑖 using a proportional hazard model i.e. such that

𝜆(𝑡 ∣ 𝑋𝑖) = 𝜆0 exp(𝛽1𝑋𝑖1 +… + 𝛽𝑝𝑋𝑖𝑝) = 𝜆0 exp(𝛽
⊺𝑋𝑖).

This model, commonly known as the Cox proportional hazard model after
his inventor Sir David Cox (D. R. Cox [1972]), entirely define the law of the
time of death and can therefore be used to estimate the mean time of death
or any other statistic of interest. The object of interest for our medical
researcher however is here 𝛽, the parameters, which can then be used to

23
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36: If the question of interest is
“Is the survival of a different than
b?” then there are more proper
statistical tests.

37: It may be apparent that I
know nothing about aeronautics,
plane designers quite certainly
care about gravity. I hope.

38: “Prediction” depends on
what exactly one wants to predict.
Classification, structured predic-
tion and many other problems
are also part of the larger frame-
work we describe here through
the scope of regression.

39: We usually assume errors in
the measurements of the output
such that 𝑌 = 𝑓(𝑋) + 𝜀, but
errors can also occur in the input.
Mathematically this doesn’t
change our model.

derive valuable insights such as the relative importance of the different
biomarkers, or to compare the relative survival of two populations.36 When
considering this point of view, where the true object of importance is the
parameters and not the model itself, it is not surprising that most of the
survival analysis literature, mostly driven by medicine, has historically
focused on studying the properties of the estimated parameters. From this
rich literature of the statistical aspects of survival analysis have emanated
a vast and comprehensive collection of results quantifying the asymptotic
convergence of the various estimators proposed. We refer the readers
interested in this approach to Klein and Moeschberger (2003) while in
this thesis in general and this chapter in particular, we adopt a wildly
different point of view of the survival analysis setting which leads us to
wildly different results.

In many practical settings, completely antithetically to the researchers
of the previous paragraph, we are not interested in understanding a phe-
nomenon at all and instead only interested in our ability to predict it.
While a physicist may be interested in understanding the why and how
of gravity, a plane designer may only be interested in making sure it flies
without a care in the world for gravity.37 This shift in objectives coincides
with the shift of practitioners in recent years: while analysing data was
once seen as a tool for scientists, data analysis is born from the necessity
for laymen to exploit the ever-growing mass of data the industry has been
accumulating. As the questions themselves are different, new tools and
results are necessary in order to support those new needs. We will focus
here on one of those questions: regression, which we will refer to as the
prediction problem even though it, in reality, only represents a fraction of
the field.38

Regression answers the question: “given an input describing an indi-
vidual, what is the output?”. In order to answer this question, we need to
formalize the question. We will, following the earlier notations, define
our output as 𝑌, representing for example the time until a certain event,
and input as 𝑋 which represents the characteristics of the individual in
question. Our question is then how to map𝑋 to 𝑌, or more formally, what
is the function 𝑓 that maps𝑋 to 𝑌. As there are is reason for a mapping

𝑌 = 𝑓(𝑋),

to exist or be unique; not only because most processes cannot be exactly
described given the limited input we have access to but because even in
the cases where it could in theory be possible (for a physical phenomenon
for example) we usually assume some level of uncertainty due to errors of
measurement.39 Instead, we try to find the best possible, or at least good
enough, mapping to answer the question. Best possible is a very subjective
term and is usually best defined specifically for the task at hand by the
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40: Mathematicians traditionally
prefer minimizing quantities to
maximizing them.

41: Our notion of un-fitness

42: Practitioners will often split
their data in training, validation
and testing sets.

practitioner as it depends on the business or industrial imperatives but in
the most general setting, with some undetermined notion of fitness ℒ, or
loss40 in the machine learning literature we can rewrite our question as

𝑓⋆ = argmin
𝑓
𝔼 [ℒ(𝑌, 𝑓(𝑋))] , (2.1)

wherewe have taken the expectation in order to account for the uncertainty
in both 𝑌 and 𝑋. We will refer to the previous quantity that is being
minimized as the population riskℛ(𝑓⋆), that is:

ℛ(𝑓) = 𝔼 [ℒ(𝑌, 𝑓(𝑋))] , (2.2)

where the expectation is taken under the true, unknown, distribution. Of
course there is no hope recovering the true minimizer of the population
risk as we cannot feasibly minimize over all possible functions, we instead
have to constrain ourselves to some class ℱ of candidates 𝑓 ∈ ℱ where
ℱ can be the class of linear functions, the class of polynomials or any
other class of function suited to the problem. Contrary to a large part of
the statistical literature, we will not assume that the class of function ℱ
contains the true mapping 𝑓⋆. The previous problems can then be written
in its final form as

̄𝑓 = argmin
𝑓∈ℱ
𝔼 [ℒ(𝑌, 𝑓(𝑋))] , (2.3)

which can be rewritten in terms of population risk:

̄𝑓 = argmin
𝑓∈ℱ
ℛ(𝑓),

where this last quantity should be read as “find the best possible function𝑓⋆
amongst all the allowed functions ℱ that minimizes the loss41 ℒ in average”.

In practice, we cannot write the population risk given earlier, but we
instead have access to realizations of the law of (𝑌,𝑋). In order to simplify
things, we make the not so constraining hypothesis that those realizations
are all identically distributed and independent. We denote by,

𝒟𝑛 ≝ {(𝑌1, 𝑋1) ,…, (𝑌𝑛, 𝑋𝑛)} ,

the training42 set comprising of the 𝑛 independent and identically dis-
tributed copies of (𝑌,𝑋) available to us. Given the hypothesis and data
available to us, instead of solving the problem eq. (2.3) we solve its empirical
variant as it is the only one available to us:

̂𝑓𝑛 = argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1
ℒ(𝑌𝑖, 𝑓(𝑋𝑖)). (2.4)
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43: While it would indeed give
us the answer, this is a much
harder problem.

If we define the empirical risk as

ℛ𝑛(𝑓) =
𝑛

∑
𝑖=1
ℒ(𝑌𝑖, 𝑓(𝑋𝑖)), (2.5)

we can then state the previous problem in terms of minimizing the empir-
ical risk instead of the population risk:

̂𝑓𝑛 = argmin
𝑓∈ℱ
ℛ𝑛(𝑓).

The prediction problem can then be solved by following a simple schema:
1. Select a loss ℒ appropriate to the task at hand,
2. Select a candidate familyℱ,
3. Select a minimization strategy to solve eq. (2.5),
4. Predict new 𝑌𝑘 for unobserved𝑋𝑘 as 𝑌𝑘 = ̂𝑓𝑛(𝑋𝑘).

Each one of the previous points lead to its own branch of research and
is deserving of a thesis in its own right but we will here simply focus on
justifying the validity of such an approach.

Remember that the real problem of interest is defined in eq. (2.2) but
not only has been constrained to a limited choice of candidates ℱ in
eq. (2.3) but more importantly is solved in practice on an empirical, and
therefore random, estimator of this same risk in eq. (2.5). It is therefore
legitimate to ask the question: “How far is the estimated function ̂𝑓𝑛 from
the true function 𝑓⋆?”. An attentive observer may notice that this question
is actually more general than what we truly are interested in: our objective
is expressed in terms of loss and we are not interested in how close ̂𝑓𝑛 and
𝑓⋆ are,43 but only inℛ( ̂𝑓𝑛). Ideally, as we know that the best possible risk
we can achieve isℛ(𝑓⋆), we would want to make sureℛ( ̂𝑓𝑛) − ℛ(𝑓⋆) is
small. This is, however, an unrealistic goal as we can at best only hope to
measure and control the risk restricted on the candidate setℱ. The risk
eq. (2.3) represents the best possible risk we, the practitioners, can hope to
achieve short of being omniscient. We therefore will only try to control
the excess risk, defined as

ℰ( ̂𝑓𝑛, ℱ) = ℛ( ̂𝑓𝑛) − infℱ ℛ(𝑓)

= ℛ( ̂𝑓𝑛) − ℛ( ̄𝑓). (2.6)

Such guarantees exist and are the basis of the justification of the field
of machine learning; but before introducing them, we bring several facts
to the attention of the reader. First, eq. (2.4) depends on the training set
𝒟𝑛 and we therefore expect our guarantees on the excess risk to depend
at the very least on its size |𝒟𝑛| = 𝑛. Secondly, the same problem depends
on the class of candidates ℱ and naively, but quite naturally, one would
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Figure 2.1: Learning sin(𝑥)
over [0, 2𝜋] with polynomials of
degrees 1,3,5 and 20.

44: A true bias-variance interpre-
tation can be obtained if the loss
is the squared error loss. Here it
is only an analogy.

45: It may not be apparent on the
plot due to plotting innacuracies
but the error goes to 0.

expect the quality of the solution to increase with the complexity or richness
of ℱ. However some quick experiments quickly prove this idea wrong.
Figure 2.1 represents for example the result of learning a simple function
with an increasingly complex family of candidates: the quality of the results
(in terms of prediction i.e. the loss achieved on new unseen examples)
increases with the complexity of the familyℱ until a certain point until it
deteriorates, potentially unboundedly so.

A simple way to think of the previous phenomenon, where highly flex-
ible families of candidate functions are able to increasingly well fit the
training set while at the same time being inadequate for prediction on new
observations, is to think in terms of “bias-variance44” decomposition of
the risk. After simple algebraic manipulations, we can obtain the following
decomposition of the excess risk of eq. (2.6):

ℰ ( ̂𝑓𝑛) = (ℛ( ̂𝑓𝑛) − ℛ𝑛( ̂𝑓𝑛))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴

+ (ℛ𝑛( ̂𝑓𝑛) − ℛ𝑛( ̄𝑓))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵≤0

+ (ℛ𝑛( ̄𝑓) − ℛ( ̄𝑓))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶

,

where 𝐵 is negative by construction. The term 𝐶 can be dealt straight-
forwardly by means of concentration inequalities (see appendix A) by
noticing that it can be written as

𝐶 = (1
𝑛

𝑛

∑
𝑖=1
ℒ (𝑌𝑖, ̄𝑓(𝑋𝑖))) − 𝔼 [ℒ (𝑌𝑖, ̄𝑓(𝑋𝑖))] .

The term of interest, or at least the one requiring us to develop additional
techniques and which motivates the field of statistical learning in general
and this chapter in particular is therefore the term 𝐴:

𝐴 = 𝔼 [ℒ(𝑌𝑖, ̂𝑓𝑛(𝑋𝑖))] − (
1
𝑛

𝑛

∑
𝑖=1
ℒ(𝑌𝑖, ̂𝑓𝑛(𝑋𝑖))) . (2.7)

The reason this term is fundamentally different to the previous term,
despite looking so similar, is that now ̂𝑓𝑛 is itself a random quantity. In
order to be dealt with, we need concentration bounds similar to those
reminded in appendix A, that is tail bounds uniform in 𝑓.

Coming back to the toy example of fig. 2.1, we can visualize in fig. 2.2
this tradeoff by plotting the error rate on new unseen observations with
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Figure 2.2: Overfitting on the
problem fig. 2.1.

46: Parametric families rep-
resent the bulk of the families
considered as those are easy to
reason about and are amenable to
optimization in practice.
47: I disagree that it is valid
proxy. While still the main
criterion in fields like deep-
learning, it is clear that adding
useless parameters do not change
the complexity in any way.

respect to the degree of the polynomial. While the error on the training set
decreases consistently,45 the error on new previously unseen observations
starts increasing after a certain threshold. In order to quantify the previous
phenomenon, we need a way to objectively measure the complexity of a
family of functions. For a parametric family46 it can be tempting to use
the number of parameters as a measure of the complexity of the class of
functions. While one could argue it can be a decent proxy,47 it is clear that
it is close to useless to compare different families: there is no reason for
a linear regression with 1000 parameters to be more powerful or more
expressive than a support vector machine with 100 parameters. At one
extreme, we could take as candidate family the space of all functions,
which even without a formal definition of complexity we will accept as
highly complex, and achieve a perfect error on the training set (just take
the function that maps𝑋𝑖 to 𝑌𝑖 for all 𝑖 ∈ ⟦1, 𝑛⟧ and does something else
for the rest of the space.) but arbitrarily bad on new examples. On the
other hand, by taking the class of constant functions, it is clear that the
error on the training set will be lackluster but the performance on new
examples will be strictly equivalent in average. There is therefore a need
for a robust definition of complexity on which to prove results pertaining
to generalization.

2.1.1 Functional Complexity
As quickly evoked earlier, the quantity of interest to control the excess
risk resemble greatly the quantities usually encountered when deriving
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48: We can see how our problem
matches the counterfactual
problem encountered in science:
any model that is sufficiently
powerful to explain everything,
and can therefore never be
falsified is useless.

the laws of large numbers and tail bounds. We, however, need to derive a
uniform law of large numbers, which we will be able to do by first defining
a notion of complexity of functions as teased earlier.

For a fixed sample of observations𝒟𝑥𝑛 = {𝑥1,…, 𝑥𝑛}, we define the set

ℱ(𝒟𝑥𝑛) = {(𝑓(𝑥1),…, 𝑓(𝑥𝑛)) ∣ 𝑓 ∈ ℱ} ,

of points in ℝ𝑛(𝒟𝑥𝑛) that can be achieved as mappings of functions ofℱ.
We can then define the empirical Rademacher complexity ofℱ as

ℜ (ℱ(𝒟𝑥𝑛)) ≝ 𝔼[sup
𝑓∈ℱ
| 1
𝑛

𝑛

∑
𝑖=1
𝜖𝑖𝑓(𝑥𝑖)|] , (2.8)

where the (𝜀𝑖) are independent and identically distributed Rademacher
variables i.e. variables such that ℙ(𝜖 = 1) = 1/2 and ℙ(𝜖 = −1) = 1/2.
As the previous quantity is a random variable, we define the Rademacher
complexity ofℱ as

ℜ𝑛 (ℱ) ≝ 𝔼 [ℜ (ℱ(𝒟𝑥𝑛))] = 𝔼[𝔼[sup
𝑓∈ℱ
| 1
𝑛

𝑛

∑
𝑖=1
𝜖𝑖𝑓(𝑥𝑖)|]] . (2.9)

The Rademacher complexityℜ𝑛 (ℱ) represents the average maximum cor-
relation between a dataset class of function and noise. This interpretation
motivates the Rademacher complexity as a useful definition of functional
complexity: it measures the ability of a class of function to model random
noise. Going back to our previous polynomial example, we can see how
this class of function behaviour matches our definition of complexity: a
polynomial of sufficiently high degree is able to capture any “pattern” in the
data, even noise, and is therefore entirely useless tomake any predictions.48

In order to control the variations of the process of eq. (2.7) we need a
uniform version of the classical Glivenko-Cantelli theorem:

Definition 2.1 (Uniform Glivenko-Cantelli). We say thatℱ is a Glivenko-
Cantelli class of function if

‖ℙ𝑛 − ℙ‖ℱ ≝ sup
ℱ
| 1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋𝑖) − 𝔼 [𝑓(𝑋)]|

ℙ
−−−−−→
𝑛→∞
0,

where ℙ𝑛 = ∑
𝑛
𝑖=1 𝛿(𝑋𝑖) is the empirical distribution of the data.

It is then possible to state a uniform concentration bound in terms of
Rademacher complexity.

Proposition 2.1 (Uniform Glivenko-Cantelli - Rademacher, see e.g. Wain-
wright (2019)). For any classℱ such that ‖𝑓‖∞ ≤ 𝑏 for all 𝑓 ∈ ℱ and 𝑛 ≥ 1
we have with probability greater than 1 − 𝜀

‖ℙ𝑛 − ℙ‖ℱ ≤ 2ℜ𝑛 (ℱ) + √
2𝑏2 log(1/𝜀)
𝑛
.
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49: This type result is usually
referred to as probably approx-
imatively correct: for a certain
level of approximation we can
only guarantee a certain level of
certainty in the result.

50: Researchers in the field of
machine learning like to joke
that everything in the field has
already been discovered by Soviet
mathematicians. This further
strengthen this hypothesis.

51: Unfortunately, the more con-
venient definitions of complexity
results in bounds that are not
as tight. Polynomial complexity
would sit between Rademacher
and vc.
52: In term of the tightness of the
bounds.

The proof uses common techniques, some of which we will use in the
proofs of the results of the next section. Generally, most of the proofs
proceed according to the following scheme:

1. Symmetrization using a ghost sample.
2. Symmetrization with a Rademacher process.
3. Conditioning on𝒟𝑛.
4. Use of a concentration inequality.

The previous result49 is enough to obtain the guarantees that are typically
expected inmachine learning: for a fixed sample size 𝑛 and some estimator
̂𝑓𝑛 that we do not assume to be in the same class as the true function, we

are able to control how far the risk we measured on the training set is to
the true population risk we will achieve on average on new examples.

2.1.2 Vapnik-Chervonenkis Dimension
We will quickly introduce here the useful notion of complexity of class of
functions known as the vc dimension or vc complexity after its inventors
V. Vapnik and A. Chervonenkis50 (Vapnik [1998, 2000]), which we will
heavily employ in the subsequent proofs of both chapters 2 and 4. While
chronologically anterior, it can be seen (when skipping the usual middle
step of polynomial complexity51) as an extension of the Rademecher com-
plexity. We have shown in the previous subsection how the Rademacher
complexity can be used to derive uniform tail bounds to control the excess
risk, but deriving the Rademacher complexity is tedious; we therefore
introduce another less powerful52 definition of complexity that happens
to be an upper-bound of the Rademacher complexity. Moreover, unlike
the Rademacher complexity, the vc dimension of a class of functions can
often easily be proven to exist if the class of function can be built from
other simple vc classes using common operations which we will clarify
later.

Definition 2.2 (Vapnik-Chervonenkis’ dimension). We say that a family of
indicator functions shatter𝒟𝑛 if all the dichotomies of𝒟𝑛 are attainable by
that family. That is, in the case of binary classification, that all 2-partitions
of𝒟𝑛 are possible, that is

|ℱ(𝒟𝑥𝑛)| = 2𝑛.

That is, we say that a family of indicator functions is of vc dimension 𝜈(ℱ)
if there exists a set of point𝒟𝜈(ℱ) of size 𝜈(ℱ) that can be shattered but
there doesn’t exist a set of point𝒟𝜈(ℱ)+1 of size 𝜈(ℱ) + 1 that can also be
shattered by that same family. The vc dimension is therefore the highest
number of dichotomies that a family of indicators can achieve. For a family
ℱ of functions 𝑓𝜔 indexed by 𝜔, the vc dimension ofℱ is defined as the
vc dimension of the family (𝟙𝑓𝜔(⋅)−𝛽>0)𝜔,𝛽 indexed by 𝜔 and 𝛽.
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Figure 2.3: sin(𝜔𝑥) admits a sin-
gle parameter but has infinite vc
dimensions.

53: Советская формулировка
или альтернативная советская
формулировка. Множество
вариантов.

The interest of the vc dimension comes from the following theorem
that we will not prove:

Proposition 2.2 (vc bound of the Rademacher complexity). For any class
ℱ and training sample𝒟𝑛, we have

ℜ𝑛(ℱ) ≤ √
2𝜈(ℱ) log(𝑛)
𝑛
.

In particular, we can restate Proposition 2.1 in terms of vc dimension:

Corollary 2.3 (Uniform Glivenko-Cantelli - vc dimension). For any class
ℱ such that ‖𝑓‖∞ ≤ 𝑏 for all 𝑓 ∈ ℱ and 𝑛 ≥ 1 we have with probability
greater than 1 − 𝜀

‖ℙ𝑛 − ℙ‖ℱ ≤ 2√
2𝜈(ℱ) log(𝑛)
𝑛
+ √
2𝑏2 log(1/𝜀)
𝑛
.

From Corollary 2.3 we can clearly retrieve the expected rate of conver-
gence for this type of problem. As mentioned earlier, one key advantage
of the vc dimension is that it is closed under a number of basic operations
that we summarize in the two following propositions:

Proposition 2.4 (vc preservation). If ℱ and 𝒮 are set classes of finite vc
dimensions 𝜈(ℱ) and 𝜈(𝒮) then the following classes of functions also have
finite vc dimensions:

1. The set class ℱ𝑐 ≝ {𝐹𝑐 ∣ 𝐹 ∈ ℱ}.

2. The set class ℱ ∪ 𝒮 ≝ {𝐹 ∪ 𝑆 ∣ 𝐹 ∈ ℱ, 𝑆 ∈ 𝒮}.

3. The set class ℱ ∩ 𝒮 ≝ {𝐹 ∩ 𝑆 ∣ 𝐹 ∈ ℱ, 𝑆 ∈ 𝒮}.

Proposition 2.5 (Subgraph vc dimension). Let ℱ be a vector class of
functions 𝑓 ∶ ℝ𝑑 ↦ ℝ with dim(ℱ) ≤ ∞. Then the subgraph class of ℱ
has vc dimension of at most dim(ℱ).

In practice, we will not make use of the previous historical formulation
of the vc dimension in terms of shattering number but will instead prefer
to express it in terms of packing and covering number (see Wainwright
[2019], chapter 5) as it relates directly to the notion of metric entropy (see
Kolmogorov [1955, 1956]; Tikhomirov [1957], and others in the russian
school 53, as well as Definition 2.3.) and enables more natural proofs.
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54: “More importantly” mainly
because practitioners are already
doing empirical risk minimiza-
tion on censored data, this is
not novel they, however, do it
without any strong theoretical
justifications which is what we
will solve in this chapter so that
hopefully they can sleep soundly.

2.1.3 Risk Minimization and Statistical Learning
We have quickly described in this section what are the results that are
expected in machine learning, i.e. bounds controlling the excess risk and
how they are usually dealt with in the literature. A large class of inter-
esting problems can be written in terms of minimizing a problem such
as in eq. (2.3) and the practical solution then boils down to replacing
the unknown distribution ℙ in the population risk functionalℛ(⋅) with
the empirical distribution ℙ𝑛 of the (𝑋𝑖, 𝑌𝑖)’s. The class ℱ of predictive
functions is supposed to be of controlled complexity (e.g. of finite vc di-
mension), while being rich enough to contain a reasonable approximant
of the minimizer 𝑓⋆ of the population risk ℛ. As quickly outlined, in a
framework stipulating in addition that the random variables 𝑌 and 𝑓(𝑋)
are sub-Gaussian (see Definition A.1), the erm is proved to yield rules with
good generalization properties (see e.g. Györfi et al. [2002]; Bartlett, Bous-
quet, andMendelson [2005]; Lecué andMendelson [2016]; Massart [2007];
Boucheron, Lugosi, and Massart [2013]; Tsybakov and Zaiats [2009]; and
Wainwright [2019], for a rigorous treatment of non-parametric estima-
tion with an emphasis on convergence results similar as those introduced
above; and Hastie, Tibshirani, and Friedman [2008]; Bishop [2006], for a
quick overview of the different standard methods in machine learning; a
purely statistical approach to statistical learning as well as in-depth treat-
ment of the various proofs can be found in Wasserman [2004]; Devroye,
Györfi, and Lugosi [1996], which treat rigorously the theoretical aspects of
machine learning. Alternatively, one can refer to Proposition A.2.). Note,
however, that in heavy-tail situations, alternative strategies are preferred
(refer to Lugosi and Mendelson [2016], for instance).

Unfortunately those results do not apply to our survival setting, as the
oberved data is not (𝑋𝑖, 𝑌𝑖), and need to be adapted to the censored setting
if one wants to reuse the already existing tools from the machine learning
literature. As most of the work in machine learning has focused on the
erm setting, and developed numerous practical tools for it, we will show
how it can not only be straightforwardly adapted to deal with censored
observations but more importantly we will give tail bounds on the excess
risk similar to those practitioners have come to expect.54

2.2 Risk Minimization under Censoring

About this Section
The rest of this chapter is in large part reproduced from the paper “Em-
pirical Risk Minimization under Random Censorship” with Stéphan
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55: This is the glass half-empty
formulation of survival analysis.
Medical researchers are usually
much more pessimistic and see it
in term of time-to-death.

Clémençon and François Portier, under final review at JMLR at the
time this manuscript was written. Some of the results established
in this chapter have been preliminarily presented in an elementary
form at the 2018 NeurIPS Machine Learning for Healthcare workshop
(ML4HEALTH) as most of the problems pertaining to credit risk have
direct analogues in the medical setting.

Guillaume Ausset, Stéphan Clémençon, and François Portier (2021a).
“Empirical Risk Minimization under Random Censorship”. under
revision in Journal of Machine Learning Research. arXiv: 1 9 0 6 . 0 1 9 0 8

As we have seen in the previous section, a wide variety of common prob-
lems can be written as the distribution-free regression problem of eq. (2.3),
and time-to-event regression is no exception. In many applications such
as industrial reliability (see Mann, Schafer, and Singpurwalla [1974]) or
clinical trials, the random variable of interest 𝑌 to be predicted is a dura-
tion, i.e. a positive random variable, representing a time-to-event such as
the lifespan of a manufactured component or the time to recovery of a
patient.55 In the majority of cases, the data at disposal to learn a predictive
rule in the survival analysis setting is not composed of independent real-
izations (𝑋𝑖, 𝑌𝑖) of distribution ℙ on the probability space (Ω,𝒜, ℙ) but of
observations (𝑋𝑖, 𝑇𝑖, 𝛿𝑖), where the observed durations are of the form

𝑇𝑖 = min(𝐶𝑖, 𝑌𝑖) ,
𝛿𝑖 = 𝟙𝑌𝑖≤𝐶𝑖 .

The random variables 𝐶𝑖, called here censoring events, model a possible
right censoring while the 𝛿𝑖, called here censoring indicators, are binary
variables indicating whether censoring has occurred for each duration.
The random variables 𝐶𝑖 are used to represent any source of possible
censoring that either invalidates our data or cause missing data. In the
medical setting this can represent anything from someone dropping out
of a medical study (the censoring event is therefore the last consultation
at which the patient was observed alive, anything after is unknown), to
something as trivial as the arrow of time (the last observed date, and
therefore censoring event, is necessarily today, or at least the date of the end
of the study or data collection). Of course, other types of censoring (e.g.
left/interval/progressive censoring) can be encountered in practice and
result in partially observed durations. Since the results established in this
chapter can be straightforwardly extended to a more general framework,
focus is here on the right censoring case which, though simple, covers
many situations. In practice, the censoring indicator represents prior

https://arxiv.org/abs/1906.01908
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knowledge about the sampling process and empirical performance can
be greatly improved by incorporating as much knowledge as possible by
taking into account as many forms of censoring as possible. Whereas the
asymptotic theory of statistical estimation based on censored data is very
well documented in the literature (see e.g. Fleming and Harrington [1991];
Andersen et al. [1993], and the references therein), the issues raised by
censoring in statistical learning has received much less attention. It is
therefore desirable to adapt the methodology presented earlier to the right
censored case.

For simplification, we will assume in the rest of the chapter that the loss
of interest is the squared error loss ℒ(𝑦, 𝑥) = ‖𝑦 − 𝑥‖22 and the resulting
population risk of interest the conditional regression problem

ℛ(𝑓) = 𝔼 [(𝑌 − 𝑓(𝑋))2] . (2.10)

Following the process of §2.1, we would normally form the empirical
version of eq. (2.10) given by

ℛ𝑛(𝑓) =
𝑛

∑
𝑖=1
(𝑌𝑖 − 𝑓(𝑋𝑖))

2 , (2.11)

which we would then minimize over some function classℱ. However, as
pointed earlier, we do not observe 𝑌𝑖, the true duration of interest, directly
but only some tangential information about it. As the empirical risk of
eq. (2.11) cannot be computed directly from the data available, we rely on
expressing it in terms of known quantities, or at least estimable quantities.
Discarding all the censored observations to evaluate the risk of a candidate
function 𝑓 would lead to the quantity

∑𝑛𝑖=1 𝛿𝑖 (𝑇𝑖 − 𝑓(𝑋𝑖))
2

∑𝑛𝑖=1 𝛿𝑖
, (2.12)

with 0/0 = 0 by convention, which is clearly a biased estimate of the
population riskℛ(𝑓) in general, since, by virtue of the strong law of large
numbers, it converges to 𝔼 [(𝑌 − 𝑓(𝑋))2 ∣ 𝑌 ≤ 𝐶] with probability one.
One may easily check that the minimizer of this functional is given by

𝔼 [𝑌𝟙𝑌≤𝐶 ∣ 𝑋]
ℙ (𝑌 ≤ 𝐶 ∣ 𝑋)

,

which significantly differs from 𝑓∗(𝑋) = 𝔼[𝑌 ∣ 𝑋] in general. Simi-
larly, taking all the observations without any correction would lead to
minimizing

𝑛

∑
𝑖=1
(𝑇𝑖 − 𝑓(𝑋𝑖))

2 , (2.13)
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with minimizer 𝔼 [𝑇 ∣ 𝑋], another biased estimate of the desired quantity.
If we assume the following hypothesis, which we will do from now on;

Assumption 2.1 (Conditional independence). The random variables 𝑌
and𝐶 are conditionally independent given the input𝑋 and we have𝑌 ≠ 𝐶
with probability one.

We can observe that, by means of a straightforward conditioning argu-
ment, one can rewrite the population risk as

ℛ(𝑓) = 𝔼[𝛿(𝑇 − 𝑓(𝑋))
2

𝑆𝐶(𝑇− ∣ 𝑋)
] , (2.14)

where 𝑆𝐶(𝑢 ∣ 𝑥) = ℙ(𝐶 > 𝑢 ∣ 𝑋 = 𝑥) denotes the conditional survival
function of the random right censoring given𝑋. We propose to estimate
the risk eq. (2.14) by computing first a nonparametric estimator ̂𝑆𝐶,𝑛(𝑢 ∣ 𝑥)
of 𝑆𝐶(𝑢 ∣ 𝑥) and then subsequently plugging it into eq. (2.14), so as to
obtain

ℛ̃𝑛(𝑓) =
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖(𝑇𝑖 − 𝑓(𝑋𝑖))2
̂𝑆𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖)

, (2.15)

which approximates the unknown quantity whose expectation is equal to
eq. (2.14):

1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖(𝑇𝑖 − 𝑓(𝑋𝑖))2

𝑆𝐶(𝑇𝑖− ∣ 𝑋𝑖)
, (2.16)

with the conditional survival function of 𝐶 given𝑋 being unknown itself.
Assumption 2.1 does not prove to be overly restrictive and is usually re-
ferred in the more general missing data literature (D. B. Rubin [1976]) as
missing at random (mar), as opposed to missing completely at random
(mcar) andmissing not at random (mnar). In this missing data setting we
assume that the reasons that explain the censoring are fully contained in
the explanatory variables available to us. This is of course, in general, a very
strong hypothesis but given enough available data it is often possible to
verify that is approximately true in practice. Addressing the problem in a
more complex probabilistic framework, where for instance𝑌 and𝐶 are not
conditionally independent given𝑋 anymore, will be the subject of future
research. The assumption stipulating that {𝑌 = 𝐶} is a zero-probability
event is quite general, insofar as it allows considering situations where
𝑌 and/or 𝐶 are discrete variables. Under conditional independence, it is
obviously satisfied when the random variable 𝑌 is continuous. Note that
even without Assumption 2.1, it is possible to obtain an ipcw formulation
of the population risk of the form

ℛ(𝑓) = 𝔼[𝛿(𝑇 − 𝑓(𝑋))
2

𝐺(𝑇−,𝑋)
] ,

𝐺(𝑡, 𝑥) = ℙ (𝐶 > 𝑡 ∣ 𝑇 = 𝑡, 𝑋 = 𝑥) .
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Observe that the risk estimate of eq. (2.15) can be viewed as a weighted
version of the sum of the observed squared errors of the form

𝑛

∑
𝑖=1
𝑤𝑖 (𝑇𝑖 − 𝑓(𝑋𝑖))

2 , (2.17)

just like eq. (2.12) except that the 𝑖-th weight 𝑤𝑖 is not 𝛿𝑖/∑𝑗≤𝑛 𝛿𝑗 anymore
but

𝑤𝑖 =
𝛿𝑖

̂𝑆𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖)
.

In the terminology of survival analysis, the weighted empirical risk of
eq. (2.15) is usually referred to as an ipcw estimate (Gerds et al. [2017]) as
the weighting scheme consists in attributing to the non-censored observa-
tions a weight equal to the inverse of their probability of being censored.
More generally, the same principle can be found in the setting where 𝛿
indicates membership to a set such that 𝛿𝑖 = 𝟙𝐴(𝑥𝑖) under the name of
propensity score, in this case the method is then called inverse propen-
sity score weighting and enjoys a wide corpus of research and success in
the statistical literature. The common problem meant to be corrected by
propensity scores is the problem of non-uniform sampling of two or more
populations. Imagine for example the scenario where one wants to study
the effectiveness of some invasive treatment A in relation to a placebo B, or
the absence of treatment. It is common to not be able to design a random
trial and only have access to a retrospective observations. Given that the
treatment A is invasive one would imagine that the only people receiving
it are those with very negative survival prospects. If one were to compare
the survival of the population A with that of population B naively without
taking into account that the assignment depends on the covariates of the
individuals, then the probable conclusion would be that treating patients
kill them. It is therefore necessary to take into account the decisions and
processes that lead to people falling into each sub-populations, in this case
A or B and in our case censored or not censored. While not the subject of
this thesis, it is interesting to see how censoring can be seen as a propensity
problem in order to draw inspiration from the sampling literature.

A natural strategy to learn a predictive function in the censored frame-
work described above then consists in solving the reweightedminimization
problem

inf
𝑓∈ℱ
ℛ̃𝑛(𝑓), (2.18)

over an appropriate classℱ. Of course the approach as described may feel
circular as we have traded a known function evaluated at unknown points
for an unknown function evaluated at known points. We can, of course,
estimate 𝑆𝐶 but given the symmetry in the roles of 𝐶 and 𝑌, one could
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56: Kaplan-Meier risk will some-
time be used to refer to version
with unconditional estimates
of the censoring weights and
Beran risk for the conditional ver-
sion when a distinction between
the two cases needs to be made
explicitly.

reasonably argue that we can therefore also directly estimate 𝑆𝑌 and use
that as a plugin estimator, for example of the form

̂𝑟𝑛(𝑥) = ∫𝑦 d ̂𝑆𝑌,𝑛(𝑦 ∣ 𝑋 = 𝑥),

for the conditional mean. We argue here that if the object of interest can
be framed in the risk minimization framework then this is the problem
that should be solved and the previous equation should be avoided. In the
previous approach, all the error is contained in ̂𝑆𝑌,𝑛, which we can indeed
control, but we do not have any guarantees on the quality of the subsequent
plugin estimate ̂𝑟𝑛(𝑥); a modest error in ̂𝑆𝑌,𝑛 can be amplified after integra-
tion. If instead the problem is framed as a risk minimization, we still have
the same error in ̂𝑆𝐶,𝑛 but we now minimize the new reweighed problem,
with the effect of regaining control over the final error. As we will show
later, even using unsophisticated and “wrong” ̂𝑆𝐶,𝑛 is counterbalanced by
the gains in ̂𝑓𝑛. The ipcw approach proposed here is not novel and is
already widely used by practitioners. Results on the properties of the ipcw
risk also exist (see Gerds et al. [2017], for a recent review) but our goal
here is to adapt the usual guarantees people expect under the form of tail
bounds, in order to justify the current use as well as convince the rest of
the survival community of the potential gains.

2.2.1 Related Work
In the rest this chapter, we will first start by building a biased plug-in
estimator of the risk of eq. (2.3) by means of the Beran estimator of the
conditional survival function of the censoring variable (Beran [1981]). This
estimator has been studied in a similar non-asymptotic and nonparamet-
ric setting to the one considered here in the work of Dabrowska (1989),
where she derives a Dvoretzky-Kiefer-Wolfowitz type exponential bound
(Dvoretzky, Kiefer, and Wolfowitz [1956]) on the tail distribution of the
survival function in the random design case. Similar results are obtained
by van Keilegom and Veraverbeke (1996) in the fixed design case, but
also extended to the quantiles. The resulting risk function of eq. (2.15),
which we will refer from now on and completely arbitrarily as ipcw risk.56
The asymptotic behaviour of such weighted empirical risk has been first
considered in the seminal contributions of Stute and J.-L. Wang (1993);
Stute (1993a,b, 1995a,b, 1996) where the convergence in distribution of the
Kaplan-Meier integrals defined as

∫𝜑(𝑡, 𝑥) d𝐹𝑛(𝑡 ∣ 𝑥) ≝
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖 ∣ 𝑋𝑖)
̂𝑆𝐶,𝑛(𝑇𝑖)

,
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57: As well as uniform in the
sense that we want results for the
worse possible case in 𝑥, that is in
the supremum case.

58: Neither have to be correctly
specified on all the space, it is
sufficient if they are globally well
specified jointly, potentially on
disjoint spaces.

to ∫𝜑(𝑡, 𝑥) d𝐹(𝑡 ∣ 𝑥) is established. The population risk we consider is, of
course, a particular instance of a Kaplan-Meier integral but not only do
we wish to use weights conditional on the covariate but we are interested
in non-asymptotic57 results. These results have recently been refined in
Lopez (2011); Lopez, Patilea, and van Keilegom (2013) where the complete
conditional estimator of the survival is used to define the weights and
convergence of the resulting new Beran integral is established. While these
results motivate our approach as they indeed prove the convergence of our
ipcw estimator of the risk to the population risk, the results obtained are
still asymptotic and therefore not entirely satisfactory given our require-
ments. In Rotnitzky and Robins (1992) or Section 3.3 in van der Laan and
Robins (2003), a parametric estimate (see D. R. Cox [1972]) of 𝑆𝐶 (𝑌 ∣ 𝑋) is
used as a plugin in order to obtain an estimator of the risk. However such
an approach is limited by well-known misspecification issues related to
the choice of the parametric family. In order to mitigate this shortcoming,
van der Laan and Robins (2003); D. Rubin and van der Laan (2007), make
use of a doubly robust loss which allows for misspecification of either of
𝑆𝐶 or 𝑆𝑇 as long as one of them is correctly specified.58 The doubly robust
approach exploits the symmetry between 𝐶 and 𝑌 in order to use all the
observations by adding a correction term to the ipcw risk

1
𝑛

𝑛

∑
𝑖=1
(𝛿𝑖(𝑇𝑖 − 𝑓(𝑋𝑖))

2

̂𝑆𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
IPCW

+ (1 − 𝛿𝑖)�̂�𝑛(𝑇𝑖, 𝑋𝑖)̂𝑆𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖)
− ∫
𝑇𝑖

0

�̂�𝑛(𝑢, 𝑋𝑖)
̂𝑆𝐶,𝑛(𝑢− ∣ 𝑋𝑖)

dΛ̂𝐶,𝑛(𝑢 ∣ 𝑋𝑖)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Robustness Correction

),

where

�̂�𝑛(𝑦, 𝑥) = −
∫∞
𝑦
ℒ(𝑢, 𝑓(𝑥)) d ̂𝑆𝑌,𝑛(𝑢 ∣ 𝑥)
̂𝑆𝑌,𝑛(𝑦 ∣ 𝑥)

.

Not only such doubly robust risk has the advantage of being correct if either
𝑌 or 𝐶 is correctly specified, but the resulting estimator is locally efficient
if both models are correctly specified. We constrain ourselves here to the
simpler ipcw loss only for practical reasons as the proofs would be greatly
complicated, but extending the results to the doubly robust case will be
the focus of future research. The doubly robust approach has been further
investigated in Molinaro, Dudoit, and van der Laan (2004); Steingrimsson,
Diao,Molinaro, et al. (2016); Steingrimsson, Diao, and Strawderman (2019)
where different methodologies are proposed to build classification trees
based on the previous loss. The use of the Kaplan-Meier estimate (Kaplan
and Meier [1958]) for 𝑆𝐶 (𝑢 ∣ 𝑥) has been considered in several papers
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59: This will be introduced in
greater details in the following
section.

(Stute [1993b, 1996]; Bang and Tsiatis [2002]; Kohler, Máthé, and Pintér
[2002]). In those approaches, even if the censoring model is free from any
parametric modelling, the assumptions required to ensure consistency are
quite strong as the distribution of 𝐶 is supposed to be independent from
𝑋 (see Stute [1996], for more details). In particular, the weights used are
independent from 𝑋. To overcome the previous restrictions, the Beran
estimate (Beran [1981]), which is a kernel smoothing version of the Kaplan-
Meier estimate,59 can be employed instead of the unconditional Kaplan-
Meier estimator or a conditional but parametric approach such as a Cox
estimate. Such an approach is promoted and studied in Lopez (2011); Lopez,
Patilea, and van Keilegom (2013). Based on accuracy results for kernel-
based Beran estimators of the conditional survival function 𝑆𝐶 (⋅ ∣ 𝑥) such
as those subsequently presented, the performance of solutions of eq. (2.15)
is investigated in the next section. We point out that, as highlighted in §2.5,
alternative inference strategies for conditional survival function estimation
can be considered but, for simplicity, we restrict our attention to kernel-
smoothing techniques, although the analysis carried out can be extended
to other nonparametric methods (e.g. partition-based techniques such as
survival trees, nearest neighbours and more).

The results presented in this chapter are therefore comparable to the
ones of Lopez (2011) as both are concerned with the ipcw risk, relaxing in
particular the restrictive assumption on the dependence between 𝐶 and𝑋
done in Stute (1993b, 1996). In Lopez (2011), an asymptotic representation
of the estimation error is established when the input variable is univariate
(𝑑 = 1). An extension with a single index model is considered in Lopez,
Patilea, and van Keilegom (2013), that is when the ambient space is in
general of dimension𝑑 > 1 but the solution lies on a subspace of dimension
𝑠 = 1. The proof technique used in the next chapters is based on the
asymptotic equicontinuity of the empirical process and imposes strong
conditions on the bandwidth choice, e.g. 𝑛ℎ3 →∞ (see Theorem 3.3 in
Lopez [2011]; Lopez, Patilea, and van Keilegom [2013], and Theorem 3.1 in),
but follows the general scheme described earlier to obtain exponential tail
bounds. The major difference, and difficulty, from the proofs obtained in
the completely observed setting comes from the presence of an estimated
quantity both in the numerator and the denominator, which amongst
other consequences breaks the representation as a sum of independent
and identically distributed variables. The nonasymptotic analysis carried
out in this chapter is therefore quite different and relies on two crucial
steps:

1. Linearization of the estimator of the risk.
2. Use of concentration results for generalized𝑈-processes to describe

its behaviour (see e.g. Clémençon and Portier [2018]).
Additionally, the approach adopted here to establish nonasymptotic rate
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60: As it happens, it appears that
the average person does not look
like a 1024 × 1024 celebrity in
photos.
61: Imagine for example a
dataset of loans: it is expected
that salaries will change over
time because of inflation. The
distribution of salaries will there-
fore be entirely shifted in 10 years
compared to today, even for the
same population
62: Imagine for example training
on a dataset of images skewed
toward one sex when you know
that the general population is
equidistributed: the weights are
known in this case.

63: Many of the papers cited
earlier sidestep this problem by
specifying a model for 𝐶

bounds requires weaker conditions, only that 𝑛ℎ2𝑑/|log(ℎ𝑑)| → ∞ in the
𝑑-dimensional case. We will prove that, under appropriate conditions,
minimizers of the ipcw risk proposed have good generalization properties,
achieving learning rate bounds of order √log(𝑛)/𝑛 when ignoring the
impact of model bias on the plug-in estimation step, the same as erm in
absence of any censoring. Beyond this theoretical analysis, illustrative
numerical results are also provided in §2.5, providing strong empirical evi-
dence of the relevance of the approach promoted. They reveal in particular
that, even if the estimator of the conditional survival function plugged is
only moderately accurate, ipcw risk minimizers significantly outperform
approaches that ignore censoring, which is to be expected, but also ap-
proaches that first model the distribution and then deduce the statistics
of interest (such as the conditional mean) instead of directly solving the
corresponding erm problem (i.e. the minimization of the squared error in
the case of the conditional mean).

Incidentally, we point out that the problem under study can be viewed
as a very specific type of transfer learning problem (see e.g. Pan and
Q. Yang [2010]), insofar as, due to the censoring, the distribution of the
training/source data is not that of the test/target data. However, the source
domain coincides here with the target one and the predictive task remains
the same. The same concept can usually also be found under the name
covariate shift, where it has received considerable attention in general as it
became clear to practitioners that training data did not always look like
the data found in the wild60 or more insidious that the distribution of
the data can shift gradually over time.61 Learning bounds for this type of
problem, fundamentally treated as reweighted problems, exist for example
in Cortes, Mansour, and Mohri (2010) but do not take into account the fact
that you normally would have to estimate the weights themselves, instead
considering the weights to be known.62

2.2.2 Integration domain
In order to properly introduce our results, and in order to fairly com-
pare them to the existing literature, we start by reducing the domain of
integration of the population risk. As any conditional survival function,
𝑆𝐶(𝑦 ∣ 𝑥) vanishes as 𝑦 tends to infinity, it is desirable to avoid dealing
with the asymptotic behaviour of the conditional survival function of the
censoring and stipulating assumptions on the rate of decay of the tail. This
will also deal simultaneously with the related problem of identifiability
when the support of 𝐶 extends past the support of 𝑌: there is no hope
of uniquely characterizing the tail of something you cannot observe.63
Therefore, in the analysis carried out in §2.4 we restrict the study of the
prediction problem to a borelian domain𝕂 ⊂ ℝ+ ×ℝ𝑑 such that 𝑆𝐶(𝑦 ∣ 𝑥)
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stays bounded away from 0 on it and consider the ipcw risk

ℛ̃𝕂(𝑓) = 𝔼[
𝛿 (𝑇 − 𝑓(𝑋))2

𝑆𝐶(𝑇− ∣ 𝑋)
𝟙𝕂 (𝑇,𝑋)] , (2.19)

as well as its Beran empirical counterpart

ℛ̃𝑛,𝕂(𝑓) =
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖(𝑇𝑖 − 𝑓(𝑋𝑖))2

𝑆𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖)
𝟙𝕂 (𝑇𝑖, 𝑋𝑖) . (2.20)

For the sake of readability, from now on, we drop the explicit dependence
on𝕂 in the notation but all the risks will implicitly be considered to be
the restricted risk introduced above.

2.2.3 Outline of this chapter
As discussed at length above, the present analysis distinguishes itself from
previous works, relying on the ipcw approach as well, in several aspects.
First, the problem of regression in presence of censoring is tackled here
from the angle of prediction and not as the problem of estimating the
conditional expectation 𝑓∗ with minimum 𝐿2(𝜇𝑋)-error when denoting
the marginal distribution of𝑋 by 𝜇𝑋. Although a Beran estimator of the
survival function of 𝐶 given𝑋 is involved in the empirical risk construc-
tion given above, the goal pursued here is to ensure that the predictor ̃𝑓𝑛
obtained by solving eq. (2.15) has a small excess risk ℛ( ̃𝑓𝑛) − ℛ(𝑓∗) with
large probability. As will be discussed in detail in the next section, estab-
lishing nonasymptotic guarantees for statistical learning in the censored
context, in the form of generalization bounds, yields technical difficul-
ties which are far from straightforward to overcome when avoiding the
simplifying assumption, hardly met in practice, that the output variable
𝑌 is independent from the random variable 𝐶modelling the censoring
mechanism (see Assumption 2.1, for a much more realistic framework
for regression of censored training data). In contrast, in this chapter, we
derive sound theoretical results providing nonasymptotic guarantees for
the minimizers of the risk by jointly estimating the intrinsic loss and the
censoring mechanism.

The rest of the chapter is organized as follows:
1. The framework we consider for statistical learning based on cen-

sored training data is detailed in §2.3, where notions pertaining
to survival data analysis involved in the subsequent study are also
briefly recalled and a nonasymptotic uniform bound for the Beran
estimator of the conditional survival function of the censoring is
also stated.
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2. In §2.4, the statistical version of the expected quadratic risk we pro-
pose, based on the Beran estimator previously studied, is introduced
and the performance of its minimizers is analysed.

3. General illustrative numerical results are presented in §2.5 while ex-
periments relative to finance specifically will be presented separately
in chapter 5.

4. Several concluding remarks are collected in §2.7 while the proofs
are delayed to §2.8 in order to not hurt readability because of their
technicality and length.

2.3 Preliminary Results
In this section, we first describe at length the probabilistic setup considered
for the remainder of the chapter and recall basic concepts of censored data
analysis on which the subsequent analysis relies. Next, we establish a
nonasymptotic bound for the deviation between the conditional survival
function of the random censoring and its Beran estimator under adequate
smoothness assumptions. Here and throughout, the indicator function
of any event ℰ is denoted by 𝟙ℰ and the Dirac mass at any point 𝑥 by
𝛿𝑥. When well-defined, the convolution product between two real-valued
Borelian functions 𝑔(𝑥) and 𝑤(𝑥) on ℝ𝑑, is denoted by

(𝑔 ∗ 𝑤)(𝑥) = ∫
ℝ𝑑
𝑔(𝑥 − 𝑥′)𝑤(𝑥′) d𝑥′.

The left-limit at 𝑠 > 0 of any càdlàg function 𝑆 on ℝ+ is denoted by
𝑆(𝑠−) = lim𝑡↑𝑠 𝑆(𝑡).

2.3.1 Kernel Estimate of the Survival
We briefly recall the Beran approach for the estimation of a conditional
survival function by means of a kernel smoothing procedure and state
a uniform bound for the deviations between the conditional survival
function of 𝐶 given𝑋 and its Beran estimator. The Beran estimator of 𝑆𝐶
will later be a key quantity of our distribution-free framework. As shall be
discussed below, this result refines those obtained in Dabrowska (1989)
and Du and Akritas (2002), which are of a similar nature, except that they
are related to the estimation of the conditional survival function of the
duration 𝑌 given 𝑋, denoted by 𝑆𝑌(𝑢 ∣ 𝑥) = ℙ(𝑌 > 𝑢 ∣ 𝑋 = 𝑥), rather
than that of the conditional survival function of the censoring 𝐶 given𝑋.
Define the conditional integrated hazard function of the right censoring
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𝐶 given𝑋 by

Λ𝐶(𝑢 ∣ 𝑥) = −∫
𝑢

0

𝑆𝐶(d𝑠 ∣ 𝑥)
𝑆𝐶(𝑠− ∣ 𝑥)

. (2.21)

and the conditional subsurvival functions

𝐻(𝑢 ∣ 𝑥) = ℙ (𝑌 > 𝑢 ∣ 𝑋 = 𝑥) ,
𝐻0(𝑢 ∣ 𝑥) = ℙ (𝑌 > 𝑢, 𝛿 = 0 ∣ 𝑋 = 𝑥) ,

for 𝑢 ≥ 0 and 𝑥 ∈ ℝ𝑑. As we have (under Assumption 2.1),

𝐻0(d𝑢 ∣ 𝑥) = 𝑆𝑌(𝑢− ∣ 𝑥)𝑆𝐶(d𝑢 ∣ 𝑥),
𝐻(𝑢− ∣ 𝑥) = 𝑆𝑌(𝑢− ∣ 𝑥)𝑆𝐶(𝑢− ∣ 𝑥),

we obtain

Λ𝐶(𝑢 ∣ 𝑥) = −∫
𝑢

0

𝐻0(d𝑠 ∣ 𝑥)
𝐻(𝑠− ∣ 𝑥)

.

Here, we propose to build an estimate of Λ𝐶(𝑢 ∣ 𝑥) by plugging into
eq. (2.21) Nadaraya-Watson type kernel estimates of the conditional sub-
survival functions and derive from it an estimator of 𝑆𝐶(𝑢 ∣ 𝑥). Of
course, alternative estimation techniques can be considered for this pur-
pose. Throughout the chapter, 𝐾 ∶ ℝ𝑑 ↦ ℝ+ is a symmetric bounded
kernel function, i.e. a bounded nonnegative Borelian function, integrable
w.r.t. Lebesgue measure such that ∫𝐾(𝑥) d𝑥 = 1, 𝐾(𝑥) = 𝐾(−𝑥) for all
𝑥 ∈ ℝ𝑑 (see Wand and Jones [1994]). We assume it lies in the linear
span of functions 𝑤, whose subgraphs {(𝑠, 𝑢) ∶ 𝑤(𝑠) ≥ 𝑢}, can be repre-
sented as a finite number of Boolean operations among sets of the form
{(𝑠, 𝑢) ∶ 𝑝(𝑠, 𝑢) ≥ 𝜁(𝑢)}, where 𝑝 is a polynomial on ℝ𝑑 × ℝ and 𝜁 an arbi-
trary real-valued function. This assumption guarantees that the collection
of functions

{𝐾(𝑥 − ⋅
ℎ
) ∶ 𝑥 ∈ ℝ𝑑, ℎ > 0} ,

is a bounded vc type class (see Giné, Koltchinskii, and Zinn [2004]), a
property that will be useful to establish our results. Although very technical
at first glance, this hypothesis is very general and is satisfied by kernels of
the form 𝐾(𝑥) = 𝜁 (𝑝 (𝑥)), 𝑝 being any polynomial and 𝜁 any bounded
real function of bounded variation see Nolan and D. Pollard (1987) or
when the graph of 𝐾 is a pyramid (truncated or not). For any bandwidth
ℎ > 0 and 𝑥 ∈ ℝ𝑑, we define the rescaled kernel

𝐾ℎ(𝑥) ≝
1
ℎ𝑑
𝐾(𝑥
ℎ
) .
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Based on the kernel estimators given by

�̂�0,𝑛(𝑢, 𝑥) =
1
𝑛

𝑛

∑
𝑖=1
𝐾ℎ(𝑥 − 𝑋𝑖)𝟙𝑇𝑖>𝑢, 𝛿𝑖=0, (2.22)

�̂�𝑛(𝑢, 𝑥) =
1
𝑛

𝑛

∑
𝑖=1
𝐾ℎ(𝑥 − 𝑋𝑖)𝟙𝑇𝑖>𝑢, (2.23)

̂𝑔𝑛(𝑥) =
1
𝑛

𝑛

∑
𝑖=1
𝐾ℎ(𝑥 − 𝑋𝑖), (2.24)

define the conditional subsurvival functions estimates

�̂�0,𝑛(𝑢 ∣ 𝑥) =
�̂�0,𝑛(𝑢, 𝑥)
̂𝑔𝑛(𝑥)
,

�̂�𝑛(𝑢 ∣ 𝑥) =
�̂�𝑛(𝑢, 𝑥)
̂𝑔𝑛(𝑥)
,

as well as the biased estimators of Λ𝐶(𝑢 ∣ 𝑥) and 𝑆𝐶(𝑢 ∣ 𝑥)

Λ̂𝐶,𝑛(𝑢 ∣ 𝑥) = −∫
𝑢

0

�̂�0,𝑛(d𝑠 ∣ 𝑥)
�̂�𝑛(𝑠− ∣ 𝑥)

, (2.25)

̂𝑆𝐶,𝑛(𝑢 ∣ 𝑥) = ∏
𝑠≤𝑢
(1 − dΛ̂𝐶,𝑛(𝑠 ∣ 𝑥)) , (2.26)

with dΛ(𝑡) = Λ(𝑡) − Λ(𝑡−), which are classically referred to as the condi-
tional Nelson-Aalen and Kaplan-Meier estimators (Dabrowska [1989]).

2.3.2 Bound on the Error of the Estimate of the Survival
Let 𝑏 > 0 and define the set

𝛾𝑏 = {(𝑦, 𝑥) ∈ ℝ+ × ℝ𝑑 ∶ 𝑆𝑌(𝑦|𝑥) ∧ 𝑆𝐶(𝑦|𝑥) ∧ 𝑔(𝑥) > 𝑏} ,

which is supposed to be non-empty. On this set, one may guarantee
that �̂�0,𝑛(𝑦, 𝑥) and �̂�0,𝑛(𝑦, 𝑥) are both away from 0 with high probability,
which permits the study of the fluctuations of eq. (2.26). In addition,
the mild and standard smoothness assumption below is required in the
analysis to control the estimation bias.

Assumption 2.2 (Smoothness). For all 𝑢 ∈ ℝ+, the functions 𝑥 ↦ 𝐻(𝑢 ∣
𝑥), 𝑥 ↦ 𝐻0(𝑢 ∣ 𝑥) and 𝑥 ↦ 𝑔(𝑥) are twice continuously differentiable on
ℝ𝑑 with all partial derivatives bounded by 𝐿.

The result stated below provides a uniform bound for the deviation
between 𝑆𝐶(𝑢 ∣ 𝑥) and its estimator eq. (2.26).
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Theorem 2.6 (Uniform bounds on the survival function). Suppose that
Assumptions 2.1 and 2.2 are fulfilled. Then, there exist constants𝑀1 > 0,
𝑀2 > 0 and ℎ0 > 0 depending on 𝑏, 𝐿 and𝐾 only such that, for all 𝜀 ∈ (0, 1),
we have with probability greater than 1 − 𝜀:

sup
(𝑡,𝑥)∈𝛾𝑏
| ̂𝑆𝐶,𝑛 (𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)| ≤ 𝑀1

{
{
{

√|log(ℎ
𝑑/2𝜀)|
𝑛ℎ𝑑

+ ℎ2
}
}
}
,

as soon as ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥ 𝑀2 |log(ℎ𝑑/2𝜀)|.

The technical proof is given later in §2.8 (refer to the latter for a descrip-
tion of the constants𝑀1,𝑀2 and ℎ0 involved in the result stated above).
A similar result, for the conditional survival function of 𝑌 given 𝑋, is
proved in Theorem 2.1 of Dabrowska (1989). Observe also that choosing
ℎ = ℎ𝑛 ∼ 𝑛−1/(𝑑+4) yields a rate bound of order√log(𝑛)/𝑛4/(𝑑+4) with high
probability.

Finally, we emphasize that estimation of the conditional expectation or
density is not the goal we pursue here, the regression framework consid-
ered in the next section having to dowith prediction, i.e. the construction of
a predictive rule ̃𝑓𝑛(𝑋) from censored training data with “good” predictive
capacity. Although the learning procedure we investigate in this chapter
consists in minimizing a plug-in estimator of the risk of eq. (2.16) and con-
sequently involves the nonparametric estimator of eq. (2.26), the accuracy
of the prediction is measured by the excess risk, not by the estimation error
𝔼 [( ̃𝑓𝑛(𝑋) − 𝑓∗(𝑋))2]. In addition, we point out that alternative flexible
local averaging methods such as 𝑘-nn, decision trees or random forests,
could naturally be used to compute estimators of𝐻0(𝑢, 𝑥),𝐻(𝑢, 𝑥) and
𝑔(𝑥) and consequently estimators of 𝑆𝐶(𝑢 ∣ 𝑥) and Λ𝐶(𝑢 ∣ 𝑥). However,
whereas the accuracy of nonparametric estimators based on kernel smooth-
ing under appropriate smoothness hypotheses can be studied rather easily,
it is much less convenient to establish rates for estimators produced by
tree-based techniques for example (one generally prefers to investigate
estimators built by means of variants, involving completely random split-
ting for instance, which are quite different from the algorithms used in
practice). For this reason, the predictive performance of extensions of the
statistical learning approach studied, based on estimators of 𝑆𝐶(𝑡 ∣ 𝑥) built
by means of tree-based or 𝑘-nn techniques, are studied from an empirical
angle only in this chapter, in §2.5.
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2.4 Generalization Bounds for ipcw Risk
Minimizers

It is the purpose of this section to investigate the excess of risk of eq. (2.19)
related to a domain 𝕂 ⊂ ℝ+ × ℝ𝑑 of minimizers 𝑓𝑛(𝑥) of the ipcw risk
of eq. (2.20) over a class ℱ of predictive functions that is of controlled
complexity (see the technical assumptions below), while being rich enough
to yield a small biasℛ(𝑓∗)−ℛ( ̄𝑓∗). We consider here the situation where,
for all 𝑖 ∈ {1,…, 𝑛}, the estimate of the quantity 𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) plugged
into eq. (2.16) is obtained by evaluating the kernel smoothing estimator
of 𝑆𝐶(𝑦 ∣ 𝑥) investigated in §2.3 and based on the subsample 𝒟(𝑖)𝑛 at
(𝑦, 𝑥) = (𝑇𝑖, 𝑋𝑖) defined as

𝒟(𝑖)𝑛 ≝ {(𝑋𝑗, 𝑇𝑗, 𝛿𝑗) ∶ 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖} .

The corresponding versions of the kernel estimators eqs. (2.22) to (2.24)
and those of eqs. (2.25) and (2.26) are respectively denoted by �̂�(𝑖)0,𝑛(𝑦 ∣ 𝑥),
�̂�(𝑖)𝑛 (𝑦 ∣ 𝑥), ̂𝑔(𝑖)𝑛 (𝑥), Λ̂

(𝑖)
𝐶,𝑛(𝑦 ∣ 𝑥) and ̂𝑆

(𝑖)
𝐶,𝑛(𝑦 ∣ 𝑥). This yields the leave-one-

out estimator of the risk of any candidate 𝑓

ℛ̃𝑛(𝑓) =
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖 (𝑇𝑖 − 𝑓(𝑋𝑖))
2

̂𝑆(𝑖)𝐶,𝑛 (𝑇𝑖− ∣ 𝑋𝑖)
𝟙(𝑇𝑖,𝑋𝑖)∈𝕂, (2.27)

that is well defined on the event ⋂𝑛𝑖=1{ ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖) > 0}. As we clearly

have
ℛ(𝑓𝑛) − inf𝑓∈ℱℛ(𝑓) ≤ 2 sup𝑓∈ℱ

|ℛ̃𝑛(𝑓) − ℛ(𝑓)| ,

the key of the analysis is the control of the fluctuations of the process
{ℛ̃𝑛(𝑓) − ℛ(𝑓) ∶ 𝑓 ∈ ℱ}. Slightly more generally, we establish below a
uniform deviation bound for processes of type

𝑍𝑛(𝜑) = (
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
̂𝑆(𝑖)𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖)

) − 𝔼 [𝜑(𝑌,𝑋)] , 𝜑 ∈ Φ,

where the indexing class Φ fulfils the following property allowing us to
control the fluctuations of the pseudo-variables ̂𝑆(𝑖)𝐶,𝑛(𝑇𝑖− ∣ 𝑋𝑖), as in Theo-
rem 2.6.

Assumption 2.3 (Restricted loss). There exists a domain𝕂 ⊂ 𝛾𝑏 such that
𝜑(𝑦, 𝑥) = 0 as soon as (𝑦, 𝑥) ∉ 𝕂 for all 𝜑 ∈ Φ.

Equipped with these notations, when 𝜑(𝑌,𝑋) = (𝑌 − 𝑓(𝑋))2 𝟙(𝑇,𝑋)∈𝕂
observe that

𝑍𝑛(𝜑) = ℛ̃𝑛(𝑓) − ℛ(𝑓).
That is, as long as we restrict our definition of the loss, the risk we study
theoretically matches exactly with the usual definition of the risk.
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2.4.1 Linearization of the Risk
Whereas in the standard regression framework or in classification erm can
be straightforwardly studied by means of maximal deviation inequalities
for empirical processes, the form of the process {𝑍𝑛(𝜑) ∶ 𝜑 ∈ Φ} of interest
is very complex since the terms averaged in eq. (2.20) are obviously far
from being independent due to the presence of the plugged leave-one-out
estimators of the quantities 𝑆𝐶(𝑇𝑖− ∣ 𝑋𝑖). The subsequent analysis is all
the more technically difficult that, in contrast to most works devoted to
statistical censored data analysis, the simplifying assumption, unrealistic
in many situations in practice, that 𝑌 and 𝐶 are independent is avoided
here, cf. Assumption 2.1. Our approach to the study of the fluctuations
of the process 𝑍𝑛 consists in linearizing the statistic 𝑍𝑛(𝜑), i.e. approxi-
mating 𝑍𝑛(𝜑) by a standard i.i.d. average in the 𝐿2-sense, as stated in the
next proposition. In order to make this decomposition explicit, further
notations are needed. We set, for all 𝑖 ∈ {1,…, 𝑛},

̂𝑎(𝑖)𝑛 (𝑡 ∣ 𝑥) = − ∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)

(�̂�(𝑖)0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥))

+ ∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)2

(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥)) �̂�
(𝑖)
0,𝑛(d𝑢, 𝑥),

�̂�(𝑖)𝑛 (𝑡 ∣ 𝑥) = − ∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)2�̂�(𝑖)𝑛 (𝑢, 𝑥)

(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥))
2 �̂�(𝑖)0,𝑛(d𝑢, 𝑥)

− ∫
𝑡

0

̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢|𝑥),

where

Δ̂(𝑖)𝑛 (d𝑢|𝑥) = Λ̂
(𝑖)
𝐶,𝑛(d𝑢|𝑥) − Λ𝐶(d𝑢|𝑥),

𝑐(𝑢 ∣ 𝑥) = 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

.

Equipped with these notations, we can now state the following result.

Proposition 2.7 (Decomposition of the ipcw risk). Suppose that Assump-
tions 2.1 to 2.3 are fulfilled. There exist constants ℎ0 > 0 and𝑀1 > 0 that
depends on 𝑏, 𝐿 and 𝐾 only such that

(i) for any 𝑛 ≥ 2 and 𝜀 ∈ (0, 1), provided that ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥
𝑀1| log(ℎ𝑑/2𝜀)|, the event

ℰ𝑛 ≝ ⋂
𝑖≤𝑛
{∀(𝑡, 𝑥) ∈ 𝕂, ̂𝑆(𝑖)𝐶,𝑛(𝑡, 𝑥) ≥

𝑏
2

and �̂�(𝑖)𝑛 (𝑡, 𝑥) ≥
𝑏3

2
} ,

occurs with probability greater than 1 − 𝜀;
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(ii) for all 𝜑 ∈ Φ and 𝑛 ≥ 2, we have on the event ℰ𝑛:

𝑍𝑛(𝜑) = 𝐿𝑛(𝜑) +𝑀𝑛(𝜑) + 𝑅𝑛(𝜑),

where

𝐿𝑛(𝜑) =
1
𝑛

𝑛

∑
𝑖=1
(𝛿𝑖
𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

− 𝔼[𝛿 𝜑(𝑇,𝑋)
𝑆𝐶(𝑇 ∣ 𝑋)

]) ,

𝑀𝑛(𝜑) = −
1
𝑛

𝑛

∑
𝑖=1
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)

̂𝑎(𝑖)𝑛 (𝑇𝑖 ∣ 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

,

𝑅𝑛(𝜑) =
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

(−�̂�(𝑖)𝑛 (𝑇𝑖 ∣ 𝑋𝑖) +

(𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) − ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖))

2

𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖)

).

The proof is given in §2.8. Observe that the term 𝐿𝑛(𝜑) is a basic centred
i.i.d. sample mean statistic and its uniform rate of convergence 1/√𝑛 can
be recovered by applying maximal deviation bounds for empirical pro-
cesses under classic complexity assumptions such as those stipulated below,
whereas the term𝑀𝑛(𝜑) is more complicated, since it involves multiple
sums. It is dealt with by means of results pertaining to the theory of 𝑈-
processes (Peña and Giné [1999]), by showing that it can be decomposed
as𝑀𝑛(𝜑) = 𝐿′𝑛(𝜑) + 𝑅′𝑛(𝜑), the sum of a linear term and a second-order
term. The term 𝑅𝑛(𝜑) + 𝑅′𝑛(𝜑) is a remainder term (second order) and
shall be proved to be negligible with respect to 𝐿𝑛(𝜑) + 𝐿′𝑛(𝜑).

The theory of 𝑈-processes is used next to describe the uniform be-
haviour of𝑀𝑛+𝑅𝑛. Such concentration results are also used inClémençon,
Lugosi, and Vayatis (2008) and Papa, Bellet, and Clémençon (2016) in
simpler situations, where the residuals take the form of a degenerate 𝑈-
statistic. In our case, due to the presence of a leave-one-out estimate of the
survival function, the 𝑈-processes that arise do not have all their diagonal
terms (e.g., the sum indexes 1 ≤ 𝑖, 𝑗 ≤ 𝑛 are restrained to 𝑖 ≠ 𝑗). This
is of particular interest because results dealing with 𝑈-processes are in
most cases stated for such sums (see Lemma 2.11 and Corollary 2.12 in
the Appendix section) and, more importantly, removing diagonal terms
improves the estimation accuracy by reducing the bias (see also Delyon
and Portier (2016), remark 4).

2.4.2 Uniform tail bounds of the excess risk
To obtain uniform concentration inequalities over the function class Φ,
it is standard (Nolan and D. Pollard [1987]; Giné and Guillou [2001]) to
assume the following type of control on the complexity of the class.
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Assumption 2.4 (vc class). The setΦ of real-valued functions onℝ+ ×ℝ𝑑
is a bounded vc type of class with parameter (𝐴, 𝑣) and constant envelope
𝑀Φ.

The formal definition of vc classes is given in the Appendix section. By
means of these assumptions, the following result, proved in the Appendix
section, describes the order of magnitude of the fluctuations of the process
𝑍𝑛.

Proposition 2.8 (Tail bound of the excess risk). Suppose that Assump-
tions 2.1 and 2.4 are fulfilled. There exist constants ℎ0,𝑀1,𝑀2 and𝑀3 that
depend on (𝐴, 𝑣),𝑀Φ, 𝐿,𝐾 and 𝑏 only, such that, for all 𝑛 ≥ 2 and 𝜀 ∈ (0, 1),
the event

sup
𝜑∈Φ
|𝑍𝑛(𝜑)| ≤ 𝑀1 (√

log (𝑀2/𝜀)
𝑛
+
| log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) ,

occurs with probability greater than 1 − 𝜀 provided that ℎ ≤ ℎ0, 𝑛ℎ2𝑑 ≥
𝑀3 |log(𝜀ℎ𝑑)|.

The risk excess probability bound stated in the following theorem shows
that, remarkably, minimizers of the ipcw risk attain the same learning
rate as that achieved by classic empirical risk minimizers in absence of
censoring, when ignoring the model bias effect induced by the plug-in
estimation step (cf choice of the bandwidth ℎ).

Theorem 2.9 (Uniform control of the excess risk). Suppose that Assump-
tions 2.1 and 2.4 are fulfilled. There exist constants ℎ0,𝑀1,𝑀2 and𝑀3 that
depend on (𝐴, 𝑣),𝑀Φ, 𝐿,𝐾 and 𝑏 only, such that, for all 𝑛 ≥ 2 and 𝜀 ∈ (0, 1),
the event

|ℛ( ̃𝑓𝑛) − ℛ(𝑓⋆)| ≤ 𝑀1 (√
log (𝑀2/𝜀)
𝑛
+
| log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) ,

occurs with probability greater than 1 − 𝜀 provided that ℎ ≤ ℎ0, 𝑛ℎ2𝑑 ≥
𝑀3 |log(𝜀ℎ𝑑)|.

The proof is a direct application of Proposition 2.8. A similar bound
for the expectation of the risk excess of minimizers of the empirical ipcw
risk can be classically derived with quite similar arguments, details are left
to the reader. We finally point out that, given that Proposition 2.8 holds
true for a fairly general class of functions Φ, the guarantees provided by
Theorem 2.9 can be naturally extended to more general risk measures than
that defined by the quadratic loss.
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2.5 Numerical Experiments
Beyond the theoretical generalization guarantees established in the previ-
ous section, we now examine at length the performance of the predictive
approach proposed in the context of regression based on censored data
from an empirical perspective. We present various experiments using both
synthetic and real data, and compare it to alternativemethods documented
in the survival analysis literature standing as natural competitors. As shall
be seen below, the experimental results obtained provide strong empirical
evidence of the relevance of the Kaplan-Meier empirical risk minimization
approach described in section §2.3 and analysed theoretically in section
§2.4. All the experiments and figures displayed in this chapter can be
reproduced using the code available at g i t . s r . h t / ~ a u s s e t g / l o c a l l i n e a r .

2.5.1 Experimental Setup
Before presenting and discussing the numerical results obtained, we first
describe the experimental schemes used here to investigate the predictive
capacity of the learning procedure under random censoring previously
studied.

Data Generative Models In all the synthetic experiments we have car-
ried out, the generation of the data is based either on the proportional
hazard model of D. R. Cox and Oakes (1984) or else on the accelerated
time failure model of Buckley and James (1979); both commonly used
for parametric modelling and statistical estimation of conditional sur-
vival functions in the censored setup. Samples of the triplet (𝑇, 𝛿, 𝑋) are
obtained by specifying the marginal distribution of𝑋, as well as the condi-
tional distribution of (𝑌, 𝐶) given𝑋. For simplicity, the input r.v.𝑋 is here
uniformly distributed on the unit square [0, 1]𝑑, for 𝑑 ∈ {2, 4, 8}. Only the
results for 𝑑 = 4 are presented below, while those obtained for 𝑑 ∈ {2, 8}
are available through the link mentioned above.

CoxModel. The first survival model we use to simulate synthetic data
stipulates that

𝑆𝑌(𝑦 ∣ 𝑥) = exp(− exp(𝛽
⊺𝑥) 𝑦) ,

𝑆𝐶(𝑦 ∣ 𝑥) = exp(− exp(𝛽
⊺
𝐶𝑥) 𝑦) ,

(2.28)

where 𝛽 and 𝛽𝐶 are parameters in ℝ𝑑. Given𝑋, the conditional distribu-
tion of 𝑌 is thus exponential with parameter exp(𝛽⊺𝑋), while that of 𝐶 is
exponential with parameter exp(𝛽⊺𝐶𝑋).

git.sr.ht/~aussetg/locallinear
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Accelerated Failure Time Model (AFT). The second generative model
we considered assumes that

log(𝑌) = −𝛽⊺𝑋 + 𝜀0,
log(𝐶) = −𝛽⊺𝐶𝑋 + 𝜀1,

(2.29)

where the r.v. 𝜀0 (respectively 𝜀1) is independent from 𝑋. Different ac-
celerated failure time models can thus be generated, depending on the
distributions 𝐷0 and 𝐷1 chosen for 𝜀0 and 𝜀1. Three distributions have
been used: Normal (N with mean and variance (3/2, 1) , Laplace (L) with
location and scale (1, 1) and Gamma (G) with shape and scale (0, 1). De-
noting byAFT(𝐷0, 𝐷1) themodel such that (𝜀0, 𝜀1) ∼ 𝐷0⊗𝐷1, the variants
AFT(𝑁,𝑁), AFT(𝑁, 𝐿) and AFT(𝑁, 𝐺) have been simulated. Since the
results obtained for these AFT models are quite similar to those based on
the Cox model, only the latter are presented below. We refer to the link
aforementioned for a description of the results based on the data generated
through the AFT models.

Parameters 𝛽 and 𝛽𝐶. In the Cox and AFT models, the level of cen-
soring can be tuned by carefully choosing the parameters 𝛽 and 𝛽𝐶. In
order to guarantee that the censoring is informative, we use the following
parametrization:

𝛽⊺ = [
⌈𝑑/2⌉
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1 … 1 0 … 0] ,

𝛽⊺𝐶 = 𝜆 [1 0 1 0 1 …] ,

where the tuning parameter 𝜆 > 0 controls the level of censoring 1−𝑝with
𝑝 = ℙ (𝑌 ≤ 𝐶) and 𝑢 ∈ ℝ ↦ ⌈𝑢⌉ is the ceiling function. For a targeted
censoring level 𝑝, the parameter 𝜆 can be empirically determined so that
∑𝑛𝑖=1 𝛿𝑖 ≃ 𝑛𝑝.

Plugged estimator of the conditional survival function 𝑆𝐶(⋅ ∣ 𝑥) The
estimate of the risk eq. (2.20) one seeks to minimize is partly determined
by the choice of the estimator ̂𝑆𝐶,𝑛(⋅ ∣ 𝑥) of 𝑆𝐶(⋅ ∣ 𝑥) plugged into it.
We consider for ̂𝑆𝐶,𝑛 the kernelized Kaplan-Meier estimator eq. (2.26),
in its standard version denoted by ̂𝑆K e r n𝐶,𝑛 (⋅ ∣ 𝑥) and in its leave-one-out
version as well, denoted by ̂𝑆(𝑖)K e r n𝐶,𝑛 (⋅ ∣ 𝑥). We denote by ̂𝑆K M𝐶,𝑛(⋅) the Kaplan-
Meier estimator of the unconditional survival function of 𝐶, which can
be seen as the limit of ̂𝑆K e r n𝐶,𝑛 when ℎ → ∞ and yields the Kaplan-Meier
risk considered in Stute (1995a). In addition, we used ̂𝑆(𝑖) K N N𝐶,𝑛 (⋅ ∣ 𝑥), the
estimator obtained by replacing the kernel smoothing involved in eq. (2.20)
by a nearest neighbour averaging, in a leave-one-out fashion. Finally, we
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also considered ̂𝑆R F𝐶,𝑛, the survival random forest estimator proposed in
Ishwaran, Kogalur, et al. (2008). From each estimator of 𝑆𝐶, one computes
a plug-in estimation of the ipcw risk:

Kernel
𝑛

∑
𝑖=1
𝛿𝑖
(𝑇𝑖 − 𝑓(𝑋𝑖))

2

̂𝑆K e r n𝐶,𝑛 (𝑇𝑖 ∣ 𝑋𝑖)
loo

𝑛

∑
𝑖=1
𝛿𝑖
(𝑇𝑖 − 𝑓(𝑋𝑖))

2

̂𝑆(𝑖)K e r n𝐶,𝑛 (𝑇𝑖 ∣ 𝑋𝑖)

Forest
𝑛

∑
𝑖=1
𝛿𝑖
(𝑇𝑖 − 𝑓(𝑋𝑖))

2

̂𝑆R F𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖)
Stute

𝑛

∑
𝑖=1
𝛿𝑖
(𝑇𝑖 − 𝑓(𝑋𝑖))

2

̂𝑆K M𝐶,𝑛(𝑇𝑖)

𝑘-nn
𝑛

∑
𝑖=1
𝛿𝑖
(𝑇𝑖 − 𝑓(𝑋𝑖))

2

̂𝑆(𝑖)K N N𝐶,𝑛 (𝑇𝑖 ∣ 𝑋𝑖)
Oracle

𝑛

∑
𝑖=1
𝛿𝑖
(𝑇𝑖 − 𝑓(𝑋𝑖))

2

𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)
,

(2.30)

or if one allows biased estimated:

Naive
𝑛

∑
𝑖=1
(𝑇𝑖 − 𝑓(𝑋𝑖))

2 Observed
𝑛

∑
𝑖=1
𝛿𝑖 (𝑇𝑖 − 𝑓(𝑋𝑖))

2 . (2.31)

The naive and observed empirical risks introduced above correspond
to strongly biased estimators of the population risk eq. (2.10) of course.
Note that we ignore here the normalizing constant for the sake of brevity;
multiplicative constant that is irrelevant if one is only after the minimizer
of the erm problem. However, if one is interested in the estimate of the true
risk itself, it is then necessary to correctly normalize the previous quantities
in order to obtain complete case estimators. A point of comparison is the
true oracle risk

True Oracle 1
𝑛

𝑛

∑
𝑖=1
(𝑌𝑖 − 𝑓(𝑋𝑖))

2 ,

i.e. the empirical risk in absence of any censoring (i.e. when all the 𝑌𝑖 ’s are
observed). For each risk, a prediction rule ̃𝑓𝑛 is built by (approximately)
minimizing it over a certain class ℱ. The results are depicted in fig. 2.4
for various sizes of the (censored) training sample and different censoring
levels, the prediction error being evaluated by means of a test (uncensored)
sample of size 5000: learning a predictive function by minimizing an ipcw
estimator (here ipcw leave-one-out (loo)) of the risk always outperforms
naive alternatives, the gain in predictive performance naturally becoming
more pronounced as the level of censoring 1−𝑝 increases. Unsurprisingly,
when most of the points are observed (i.e. 𝑝 → 1), all methods reach
roughly the same error, all the losses in eq. (2.30) being equal for 𝑝 = 1,
as can be observed in fig. 2.5. Note in fig. 2.5 that the IPCW estimator
performs the best comparatively to the naive methods for a moderate level
of censoring which can be explained by the fact that when the censoring
is inexistent the methods are equivalent but when the censoring is too
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Figure 2.4: Prediction error for
data generated by the Cox model
of eq. (2.28), when minimization
is performed over the class of
affine predictive rules.

extreme there is not enough data to estimate the IPCW weights. This is,
of course, exaggerated in the present example as the training set contains
only 1000 observations which with 90% of censoring results in effectively
100 observations available for the conditional estimation of the weights.

Truncation of the estimator ̂𝑆𝐶,𝑛(⋅ ∣ 𝑥). In the theoretical analysis car-
ried out in the previous section, we placed ourselves on a restricted set
𝛾𝑏. However, in practice, we employ a truncation approach by simply
removing the last jump of the estimated survival function. For instance,
̂𝑆K e r n𝐶,𝑛 (𝑦|𝑥) is taken as

∏
�̃�𝑖≤𝑦

�̃�𝑖<max𝑗∶𝛿𝑗=0 𝑌𝑗

(1 − 𝛿�̂�𝐶,𝑛(𝑇𝑖 ∣ 𝑥)) . (2.32)

Observe that, although it is not a survival function anymore, it is still
a relevant estimator. This alleviates possible difficulties caused by the
frequent edge case where the last individual is observed (𝛿 = 1), since,
in the case where eq. (2.26) is used, we have then 𝛿𝑛/ ̂𝑆𝐶,𝑛(𝑇𝑛 ∣ 𝑋𝑛) = ∞.
Of course, it would have been possible to decide to force a restriction on
𝛾𝑏 by considering the flooring max(𝑏, ̂𝑆𝐶,𝑛(𝑦 ∣ 𝑥)) rather than ̂𝑆𝐶,𝑛(𝑦 ∣ 𝑥).
However, 𝑏 then becomes an hyperparameter of the procedure that has
to be tuned by the practitioner. It is common in the survival analysis
literature to only consider the restricted mean survival time, i.e. min(𝑌, 𝜏)
as a more relevant and easier to learn metric instead of the true 𝑌 (see
for example Royston and Parmar (2011) or Steingrimsson and Morrison
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Figure 2.5: Prediction error for
data generated by the Cox model
of eq. (2.28) with 𝑛 = 1000, when
minimization is performed over
the class of affine predictive rules
and varying levels of censoring 𝑝.

(2020)). In this case the survival function of the restricted variable is equal
to the truncated survival function of the true variable. Our approach
therefore consists in using the restricted mean censoring time as the target
for the weights in order to reduce the noise. We evaluated truncation of the
survival function and flooring by comparing the predictive performance
attained by the rule learnt from data generated by means of the Cox model,
when choosing successively ̂𝑆K e r n𝐶 , ̂𝑆

(𝑖)K e r n
𝐶,𝑛 and ̂𝑆(𝑖)K N N𝐶,𝑛 for ̂𝑆𝐶,𝑛. As depicted

by fig. 2.6 for the specific case where ̂𝑆𝐶,𝑛 = ̂𝑆
(𝑖)K e r n
𝐶,𝑛 (and this remains true

in the other cases), a wrong choice for 𝑏may have serious consequences,
while the truncation approach of eq. (2.32) consistently produces good
results. Consequently, the truncated version is always used in the following
experiments.

Calibration of ̂𝑆𝐶,𝑛(⋅ ∣ 𝑥). In order to fully specify the estimator ̂𝑆𝐶,𝑛(⋅ ∣
𝑥), it may be necessary to choose specific hyperparameters. Without cen-
soring, and therefore without having to resort to the ipcw approach, one
would select the various hyperparameters by way of a cross-validation; this
approach is, however, impossible in our case as the loss itself is unknown
and only estimated, worse any modification of the parameters of ̂𝑆𝐶 results
in a modification of the estimator of the loss we wish to minimize. One
possible solution is to rely on a surrogate loss i.e. an auxiliary loss that we
are able to compute exactly and on which a cross-validation is therefore
possible. For ̂𝑆K e r n𝐶,𝑛 and ̂𝑆(𝑖)K e r n𝐶,𝑛 , we consider �̂�ℎ,𝑛(𝑥) the nonparametric
kernel regression of 𝑇 w.r.t.𝑋, known as the Nadaraya-Watson estimator,
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Figure 2.6: Prediction error
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class of affine functions, choosing
the ipcw loo risk estimator and
the Cox model of eq. (2.28) for
generating the data.The curves
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and to the truncation approach of
eq. (2.32).
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Figure 2.7: Prediction error
𝔼[(𝑌 − ̃𝑓𝑛(𝑋))2] for varying
bandwidth ℎ, with ℱ a random
forest model, ipcw loo estimator
of 𝑆𝐶, and data following the Cox
model of eq. (2.28).

and the surrogate loss 𝔼 [|𝑇 − �̂�ℎ(𝑋)|2] which is then minimized using
cross-validation with respect to ℎ. In this way, a value for the bandwidth
parameter ℎ∗cv is obtained and might be used in ̂𝑆K e r n𝐶,𝑛 and ̂𝑆(𝑖)K e r n𝐶,𝑛 . This
approach is also easily applied to set the number of neighbours involved
in ̂𝑆(𝑖)K N N𝐶,𝑛 . As a close relative of the task of estimating 𝑆𝐶, the previous
regression loss is a good candidate for the surrogate cross-validation. In
the specific case of ̂𝑆(𝑖)K e r n𝐶,𝑛 and ̂𝑆(𝑖)K N N𝐶,𝑛 , we experimentally studied the impact
of the choice of ℎ and 𝑘 on the prediction performance defined here by
the 𝐿2 loss,

𝔼[(𝑌 − ̃𝑓𝑛(𝑋))
2] .

The results for the specific case of ̂𝑆(𝑖)K e r n𝐶,𝑛 are given in fig. 2.7 and demon-
strate the need to be over-conservative rather than under-conservative in
the choice of these hyperparameters. In our experiments, choosing ℎ at
least equal to the value ℎ∗cv obtained by minimizing the surrogate, and up
to 5 times this value, is a safe choice. Consequently, we use ℎ = 5ℎ∗cv in



2 Prediction and Censoring 56

the following experiments. For ̂𝑆R F𝐶 , given the large number of hyperpa-
rameters, the default parameters selected by the package’s authors have
been used.

2.5.2 Experimental Results based on Synthetic Data
We now present the results obtained from the data generated by means of
the model previously described.

Risk estimation. While not the focus of the predictive approach studied
in this chapter, it is of interest to evaluate the quality of the estimation of
𝔼[𝜑(𝑌,𝑋)], related to a certain function 𝜑, attained by the ipcw method.
In order tomake computations easier, we choose to study functionals of the
form 𝜑(𝑌,𝑋) = 𝑌 exp(−𝑋⊺𝛽), where 𝑌 follows the Cox model described
in eq. (2.28). In this case 𝔼[𝜑(𝑌,𝑋)] = 1. For a single random dataset
𝒟𝑛 = {(𝑋𝑖, 𝑌𝑖, 𝛿𝑖) ∶ 𝑖 = 1,…, 𝑛} of size 𝑛, the excess risk is given by

ℰ𝑛(𝛽) = |1 −
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖
̂𝑆𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖)

𝑇𝑖 exp(−𝑋
⊺
𝑖 𝛽)| .

Based on𝑀 = 100 simulated datasets, we study the distribution of ℰ𝑛(𝛽)
for varying sample sizes 𝑛. We represent themedian, 5% and 95%quantiles
of ℰ𝑛(𝛽) in fig. 2.8 for each survival estimator. As can be seen in fig. 2.8,
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Figure 2.8: Estimation error
for the ipcw Risks of eq. (2.30)
compared to the naive method,
for 𝑝 = 1/4 and data following
the Cox model of eq. (2.28).

while the naive uncorrected method results in a poor approximation of the
considered expectation (as expected, since it is strongly biased), the ipcw
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64: Or population risk.

65: Note that in that case we only
have to rely on classical results of
convergence of the estimate as ̃𝑓𝑛
is independent of the test set.

reweighting errors converge towards 0. One should pay specific attention
to the particularly good performance of the leave-one-out version of the
ipcw estimators. We also point out that low-bias estimators of 𝑆𝐶, such as
the Random Forest estimator, can underperform significantly compared
to their high bias counterparts such as the unconditional Stute estimator.
This behaviour is consistent with the observations made in the previous
discussion about calibration. It is illustrated by fig. 2.7. We empirically ob-
serve that the ipcw estimator of the risk with oracle weights (i.e. computed
from the true conditional survival function 𝑆𝐶(. ∣ 𝑥)) may be less accurate
than plug-in versions (i.e. computed from an estimator of the conditional
̂𝑆𝐶,𝑛(. ∣ 𝑥)) and exhibits a much higher variance. Intuitively, this phe-

nomenon can be explained by the fact that the empirical weights governed
by the value 1/𝑆𝐶(𝑌𝑖|𝑋𝑖) can grow arbitrarily large for observations in the
tail. This phenomenon is reduced for the estimated version loo (resp.
𝑘-nn) because of the truncation (see the implementation details above)
and the over-conservative choice of the bandwidth (resp. of the number of
neighbours). A similar phenomenon occurs for estimated of importance
sampling type, for which the weights appearing in the denominator need
to be tuned finely, see Delyon and Portier (2020).

Predictive performance. In this chapter, we are concerned with the
predictive task, rather than risk estimation. Hence, we now focus on the
problem of minimizing eq. (2.10). We study the prediction error64 ℛ( ̃𝑓𝑛),
that is

ℛ( ̃𝑓𝑛) = 𝔼 [(𝑌 − ̃𝑓𝑛(𝑋))
2] ,

for the following types of predictive modelℱ: Support vector Regression
(SVR), Random Forests and Linear Regression. Although the choices we
made are far from being exhaustive, they correspond to tools commonly
used by practitioners.

Following the experimental scheme presented in §2.5.1 we first generate
train sets of varying size 𝑛 and test sets of fixed size 5000 according to
the data generative models described in §2.5.1. We then estimate on the
train set the weights corresponding to each risk described in eq. (2.30)
with hyperparameters chosen using the procedure given in §2.5.1 before
computing ̃𝑓𝑛, the minimizer of the resulting empirical risk over the class
ℱ considered. We finally estimate the prediction error ℛ( ̃𝑓𝑛) using the
test dataset. While not a perfect or exact estimate of the true prediction
error, or population risk, for a sufficiently large test the estimate is suffi-
ciently accurate for comparisons.65 Each experiment is entirely replicated
(including the sampling of the train and test sets) 100 times in order to
obtain reliable statistics for the distribution of the true risk of the learning
procedure.
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Figure 2.9: Prediction error for
different estimators of 𝑆𝐶 using
the linear regression model for
data generated by the Cox model
eq. (2.28).
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Figure 2.10: Prediction error for
different estimators of 𝑆𝐶 using
the linear regression model for
data generated by the AFT(𝑁, 𝐿)
model eq. (2.29).
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Figure 2.11: Prediction error
for the three predictive models
(SVR, random forest and linear
regression) using the ipcw loo
for data generated by the Cox
model of eq. (2.28).
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Figure 2.12: Prediction error
for the three predictive models
(SVR, random forest and linear
regression) using the IPCW
LoO for data generated by the
AFT(𝑁, 𝐿)model eq. (2.29).

As already observed earlier in figs. 2.8 and 2.9 shows that the ipcw loo
predictor systematically outperforms the other predictors in our experi-
ments, no matter the level of censoring 𝑝 and across different distributions
as can be seen here for the specific case of AFT(𝑁, 𝐿). Consequently, any
further mention of ipcw implicitly refers to the ipcw loo version from
now on and all subsequent experiments involve the use of ̂𝑆(𝑖)K e r n𝐶,𝑛 . We also
underline that these results hold true, no matter the predictive modelℱ
considered, as can be seen by examining fig. 2.11 or the underlying distri-
bution as can be seen by examining fig. 2.12. It is interesting to note that
the difference between the methods increase as the number of observa-
tions in the training set increases. As the conditional estimators are more
complex, more data is necessary in order to differentiate themselves from
the unconditional versions.

Finally, we compare variants of popular machine learning methods im-
plementing the ipcw technique promoted in this chapter to standard state-
of-the-art procedures from the survival analysis literature that do not rely
on re-weighted risk minimization. Such techniques include classic statisti-
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cal methods based on the preliminary estimation of the survival function,
as already mentioned in §2.1 (see e.g. van der Laan and Robins [2003]), the
survival function estimator being next used to estimate the downstream
quantity of interest in a plug-in fashion, provided that the latter can be
expressed as an integral w.r.t. the survival function, just like the conditional
mean. An alternative approach, in the spirit of machine learning methods,
consists in designing losses tailored to the censored regression problem,
either through transformation models in VanBelle, Pelckmans, Suykens,
and Huffel (2011), or else by adapting the SVM methodology, as done in
e.g. Van Belle, Pelckmans, Suykens, and VanHuffel (2007); Pölsterl, Navab,
and Katouzian (2015, 2016). We also include the method of Hothorn et al.
(2006) which shares similarities with the approach investigated in this
chapter and uses a boosting technique to optimize a loss reweighted by
unconditional Kaplan-Meier weights, as well as the technique proposed in
Ishwaran, Kogalur, et al. (2008) that builds a recursive splitting of the fea-
ture space𝕏 by maximizing a measure of inter-cluster dissimilarity of the
survival functions, the resulting clusters being then used for downstream
tasks such as classification, regression, or quantile estimation. We compare
the predictive performance of ten estimators of the regression function
based on statistical models documented in the survival literature with
that of five predictive functions learned using the ipcw risk minimization
approach. The ipcw versions of the machine learning techniques for re-
gression considered in these experiments, corresponding to the approach
studied in the present chapter, have been implemented with S c i k i t - L e a r n

(Pedregosa et al. [2011]), combined with our own implementation of the
loo ipcw predictor we propose. For the survival machine learning meth-
ods mentioned above, we use the reference implementations of the S c i k i t

S u r v i v a l package (Pölsterl [2020]). The canonical implementation of Ish-
waran and Kogalur (2007) is used for Random Survival Forest. The default
values for the hyperparameters are used in every case. All experiments
are based on 𝑛 = 200 training observations. Results for all methods can
be found in table 2.1. While the undeniable superiority of ipcw methods
compared to the standard survival techniques may appear surprising at
first glance. However, keeping in mind that the performance measure is
here the prediction errorℛ( ̃𝑓𝑛), or expected squared error, it is expected
that directly minimizing an estimator of the prediction error yields better
results than a two-stage procedure that consists in estimating first the
underlying distribution and forming next an estimator of its mean.

2.5.3 Experimental Results based on Real Data
The performance of the ipcw risk minimization approach is now investi-
gated on the The Cancer Genome Atlas (tcga) Cancer data (Grossman
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𝔼[(𝑌 − ̃𝑓𝑛(𝑋))
2]

Method 𝑝 = 3/4 𝑝 = 1/2 𝑝 = 1/4

S
c
i
k
i
t

S
u
r
v
i
v
a
l

Survival Gradient Boosting 3.19 3.55 3.61
Cox Proportional Hazards 7.86 7.61 7.03
Coxnet 7.62 7.39 6.85
Kernel Survival SVM 4.02 3.92 4.13
Survival SVM 4.04 4.09 3.94
Hinge Loss Survival SVM 8.10 8.28 8.09
Minlip Survival SVM 3.27 3.96 4.22
Random Survival Forest 2.01 2.94 2.78

S
c
i
k
i
t

L
e
a
r
n Ridge + IPCW 1.75 1.49 1.24

Kernel Ridge + IPCW 2.07 1.60 1.35
Linear Regression + IPCW 1.81 1.49 1.24
Random Forest + IPCW 1.85 1.57 1.36
SVR + IPCW 1.87 1.66 1.42

Table 2.1: Performance on the
Cox dataset

et al. [2016]) using solely the ribonucleic acid (rna) transcriptomes as
informative variables. All models are trained on 𝑛 = 8080 patients with
a censoring rate of 18%, we measure on the remaining 1449 observed
patients the prediction error, as well as the concordance index defined by

𝐶(𝑓) =
∑𝑖 ∑𝑗 𝛿𝑗𝟙𝑓(𝑋𝑗)>𝑓(𝑋𝑖)𝟙𝑇𝑗≤𝑇𝑖
∑𝑖 ∑𝑗 𝛿𝑗𝟙𝑇𝑗≤𝑇𝑖

, (2.33)

which can be seen as an extension of the classical area-under-curve (auc)
metric for the standard classification problem to censored data, measuring
how well ordered the predicted death times are. Note that as a complete
case statistic itself, the glsauc could benefit from the same methodology as
presented in this chapter; that is from the use of IPCWweights to construct
an estimator of the concordance. In practice as the concordance index is
not the object of importance here, we use the standard definition of Harrel
in order to facilitate comparisons with other approaches as well as prevent
any discussions on how to choose the specific IPCW approach to compute
the weights. For all the results, we use the ipcw methodology presented
earlier. The Cox proportional hazards model was, however, learned after
variable selection via a Lasso regression so as to augment performance.

We observe from the results in table 2.2 that, as expected, the predic-
tors built through ipcw risk minimization significantly outperform their
competitors, including the standard Cox model, for the prediction task.
The large improvement compared to the Cox approach is not unexpected,
insofar as the seemingly less sophisticated ipcw approach is specifically
designed for the purpose of prediction, but can still surprise. By directly
minimizing an estimate of the loss of interest, it naturally achieves a lower
test prediction error than that reached by the traditional two-stage ap-
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IPCW Naive Observed

Method 𝐿2 Error (years) C 𝐿2 C 𝐿2 C

Cox 18.78 0.6095 – – – –
SVR 2.768 0.563 2.796 0.575 2.795 0.543
Lin. Reg. 3.193 0.594 4.971 0.557 3.898 0.508
Ridge 3.193 0.594 4.962 0.557 3.896 0.508
Kernel Ridge 2.683 0.597 2.704 0.592 2.956 0.513
Random Forest 2.577 0.630 2.636 0.603 2.878 0.542

Table 2.2: Results of the ipcw
approach on the TCGA Cancer
data.

66: That is loss functions, usu-
ally in classification, that are
minimized uniquely by the true
probability distribution. Note
that it is usually not the case in
classification as the optimal Bayes
rule is invariant under scaling
and translation of the threshold.

proach in statistics, which consists in estimating first the distribution and
deducing next an estimator of the minimizer of the loss of interest. The
Cox estimator only controls the likelihood of the model without any con-
cern for the predictive performance. In particular, extreme errors are
not penalized in any way while those are hurtful to the overall 𝐿2 error.
More interestingly, we see that while the difference is not as pronounced,
the ipcw predictors also outperform the Cox estimator with respect to
the concordance index. The concordance index, as an extension of the
Wilcoxon-Mann-Whitney or glsauc which therefore involves sorting the
observations is a measure that can hardly be optimized directly in prac-
tice but is often viewed as valuable by practitioners. Recently, by framing
sorting as the dual of an optimal transport problem, approaches to differ-
entiable sorting have been proposed in Cuturi, Teboul, and Vert (2019),
and Blondel et al. (2020) and could therefore be used to directly optimize
an arbitrarily close approximation of the concordance index provided that
the learning algorithm uses gradient descent. Remarkably, as the ipcw
risk minimization approach can be combined with highly sophisticated
learners (such as random forests), without any modification or increase in
complexity, it is possible to significantly increase its predictive capacity,
while edging the standard survival techniques on auxiliary metrics as well.

2.6 Joint ipcw Games
We have concentrated in the analysis as well as the examples our efforts on
the task of predicting the regression function of the survival time bymeans
of ipcw erm, that is predicting 𝑌 by solving an erm problem reweighted
by the inverse probability of censoring. Regression, that is estimating
𝔼[𝑌 ∣ 𝑋] is, however, not the only quantity of interest one can express as
an empirical risk minimization problem. In particular, for proper scoring
rules66 (Dawid and Musio [2014]), it is possible to write the problem of
estimating 𝑆 as an erm problem. Notably, the Brier score (bs) (Brier and
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Allen [1951]), defined as

BS𝑌(𝑡, 𝜃) = 𝔼 [(𝑆𝑌(𝑡 ∣ 𝑋) − 𝟙𝑌>𝑡)2] , (2.34)

admits 𝑆(𝑡) as a minimizer, as does the Binomial log-likelihood (bll)
(Kvamme, Borgan, and Scheel [2019]) defined by

BLL𝑌(𝑡, 𝜃) = 𝔼 [− log(1 − 𝑆𝑌(𝑡)) 𝟙𝑌≤𝑡 − log(𝑆𝑌(𝑡)) 𝟙𝑌>𝑡] . (2.35)

Of course, both rules are inappropriate for the estimation of 𝑆𝑌 globally
as they only concern themselves with estimation at a specific time 𝑡. It is,
however, possible to integrate the previous quantities in order to obtain
the integrated Brier score (ibs)

IBS𝑌(𝜃) = ∫
∞

0
BS𝑌(𝑡, 𝜃) d𝑡

= ∫
∞

0
𝔼 [(𝑆𝑌(𝑡 ∣ 𝑋) − 𝟙𝑌>𝑡)2] d𝑡,

and integrated Binomial log-likelihood (ibll)

IBLL𝑌(𝜃) = ∫
∞

0
BLL𝑌(𝑡, 𝜃) d𝑡

= ∫
∞

0
𝔼 [− log(1 − 𝑆𝑌(𝑡)) 𝟙𝑌≤𝑡 − log(𝑆𝑌(𝑡)) 𝟙𝑌>𝑡] d𝑡.

In the survival setting, given that both eq. (2.34) and eq. (2.35) are risk
minimization problems, we can rewrite them in their ipcw form, that is

BS𝑌(𝑡, 𝜃) = 𝔼[
𝑆𝑌(𝑡 ∣ 𝑋)2𝛿𝟙𝑌≤𝑡
𝑆𝐶(𝑌− ∣ 𝑋)

+ (1 − 𝑆𝑌(𝑡 ∣ 𝑋))
2 𝟙𝑌>𝑡

𝑆𝐶(𝑡 ∣ 𝑋)
] , (2.36)

BLL𝑌(𝑡, 𝜃) = 𝔼[−
log(𝑆𝑌(𝑡 ∣ 𝑋)) 𝛿𝟙𝑌≤𝑡
𝑆𝐶(𝑌− ∣ 𝑋)

− log(1 − 𝑆𝑌(𝑡 ∣ 𝑋)) 𝟙𝑌>𝑡
𝑆𝐶(𝑡 ∣ 𝑋)

].

(2.37)

and corresponding integrated ipcw versions. Given the previous remarks,
it is therefore possible to construct an estimator of 𝑆𝑌 if we are able to
estimate 𝑆𝐶, as done previously. However, the variables 𝐶 and 𝑌 have an
entirely symmetrical role in the survival analysis setting studied here, it is
therefore also entirely possible to write the same problem but in terms of
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67: We use ℎ solely to make
sure the resulting problem is
unconstrained.

𝐶 instead of 𝑌, that is

BS𝐶(𝑡, 𝜃) = 𝔼[
𝑆𝐶(𝑡 ∣ 𝑋)2 (1 − 𝛿) 𝟙𝐶≤𝑡
𝑆𝑌(𝐶− ∣ 𝑋)

+ (1 − 𝑆𝐶(𝑡 ∣ 𝑋))
2 𝟙𝐶>𝑡

𝑆𝑌(𝑡 ∣ 𝑋)
],

BLL𝐶(𝑡, 𝜃) = 𝔼[−
log(𝑆𝐶(𝑡 ∣ 𝑋)) (1 − 𝛿) 𝟙𝐶≤𝑡
𝑆𝑌(𝐶− ∣ 𝑋)

− log(1 − 𝑆𝐶(𝑡 ∣ 𝑋)) 𝟙𝐶>𝑡
𝑆𝑌(𝑡 ∣ 𝑋)

].

Given that we then have one erm problem depending on ̂𝑆𝐶 to estimate ̂𝑆𝑌
and one erm problem depending on ̂𝑆𝑌 to estimate ̂𝑆𝐶, it seems natural to
ask whether it is possible to solve both at the same time jointly. Goldstein
et al. (2021) shows that it is indeed possible for strictly proper scoring rules
such as bs and bll: the authors propose an inverse-weighted game where
both current estimates ̂𝑆𝑌 and ̂𝑆𝐶 are jointly updated iteratively following
algorithm 1 where the value functions 𝑉𝑌 and 𝑉𝐶 can be constructed from
the possible ipcw strictly proper scoring rules such as BS(𝑡, 𝜃) or BLL(𝑡, 𝜃)
by defining the integrated variants as a collection of 𝐾 games where 𝐾
is the number of unique event times. In that case, for a strictly proper
scoring rule 𝑆 we define the value functions as

𝑉 (𝜃) = (𝑆 (𝑇1, 𝜃) ,…, 𝑆 (𝑇𝐾, 𝜃)) .

If one defines
𝑔𝑌(𝜂𝑌) ≝ 𝐽

⊺
ℎ d𝑉𝑌(ℎ(𝜂𝑌)),

where ℎ is an invertible mapping from ℝ𝑑 to the space of parameters Θ.67
Surprisingly, the previous scheme is able to be competitive or even beat

Algorithm 1 Following Gradients in Inverse-Weighted Games
Require: Choice of value functions 𝑉𝑌 and 𝑉𝐶, normalization function ℎ,

learning rate 𝛾
1: initialize 𝜂𝑌 and 𝜂𝐶 randomly
2: repeat
3: / / c o m p u t e b o t h g r a d i e n t s s i m u l t a n e o u s l y

4: 𝜂𝑌 ← 𝛾𝑔𝑌 and 𝜂𝐶 ← 𝛾𝑔𝐶
5: until convergence
6: 𝑘⋆, 𝜆⋆ ← argmin𝑘,𝜆 e r r o r 𝑘,𝜆
7: return 𝑘⋆, 𝜆⋆

competing approaches in the low data regime on a variety of real datasets,
as can be seen in fig. 2.13.
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68: In many cases the models
perform much better than the
bounds suggest. In the case
of deep learning, for example,
naive vc bounds are so wide
that the common assumption
is that it should not work well.
The surprisingly good results
of deep-learning therefore call
for better arguments than naive
complexity bounds to explain
their performance.
69: Теория Распознавания
Образов: Статистические
Проблеми Обучения (Theory
of Pattern Recognition: Statistical
Problems of Learning), only
available in Russian.
Я же говорил, что советские
уже все изобрели.

2.7 Conclusion
Machine Learning has achieved great success in the recent years by tak-
ing a different approach to the usual statistical literature. By focusing
on the objectively easier problem of prediction instead of estimation, the
statistical learning field has been able to frame the problem in a different
way, resulting in a different approach. As seen, many prediction prob-
lems can be straightforwardly framed as minimization problems, therefore
bypassing the need for the much more ambitious task of estimating the
density, survival or any other quantity that define the law of the object
of interest. While this approach has proven to work exceptionally well
for prediction, the difference in questions asked calls for different results.
We have described earlier one of the important guarantees the field of
machine learning and predictive methods in general has come to expect:
the ability to guarantee good generalizations properties for the models
developed; that is the ability to bound the difference in error between the
ideal case and the model at hand. While the bounds obtained are in reality
fairly lax and are not sufficient to ensure good performances,68 they are
in practice enough to motivate the use of most methods: as long as the
complexity of the function class of interest is controlled, we can expect
good generalization capabilities. Such guarantees are not only incredibly
useful in theory but can also lead to practical extensions like structural risk
minimization (Vapnik and Chervonenkis [1974])69 where the risk is mini-
mized such that the complexity is also minimized by penalizing the overall
risk term. More importantly, the empirical risk minimization framework
and matching guarantees, made possible the ability to treat separately the
theory and the practice: by providing broad and largely applicable results
on generalizations, practitioners are able to mostly ignore the theoretical
justification as long as they know their problem can be framed as an erm
problem and their proposed estimator proved to have finite vc dimen-
sion. It is therefore not surprising that the erm framework has proven so
popular.

Unfortunately, some problems cannot be written straightforwardly as
sums of i.i.d. variables and therefore do not fit the erm framework and
cannot rely on the vast sum of results it entails. As seen earlier, prediction
of censored observations do not fit the erm framework as the variables are
not observed. It was, however, already known, and used in practice, that
the problem could be rewritten as a reweighed erm problem and therefore
solved using the tools already developed for uncensored prediction. De-
spite the wide use and great success of this reweighted ipcw approach, no
guarantees on the generalization error existed. Even though the resulting
problem looks strikingly similar to the usual erm approach, careful exam-
ination actually reveals that it is fundamentally different: the terms in the
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sum are not i.i.d. at all as the weights themselves needs to be estimated
and depend on all the elements of the sum. Despite this fundamental
difference, we have shown in this chapter that after linearization it was
possible to obtain a problem that looks like the standard erm problem, and
obtained in Theorem 2.9 the usual generalization guarantee practitioners
have come to expect and rely on.

The results presented here, however, are only preliminary in the sense
that we only prove them for Beran type of kernel estimators of the survival
function 𝑆𝐶. While the experiments presented in §2.5 prove that such
estimators are more than enough to achieve satisfactory performances
(and are often state of the art), we hint on the possibility to replace the fairly
unsophisticated kernel estimator with other estimators such as rsf. Given
the fact that estimation of the survival function is an important problem
in itself but is now also an important ingredient for the downstream task
of learning a more general regression function, it is worthwhile to devote
time and efforts to the task of developing a highly accurate and flexible
conditional estimator of 𝑆𝐶 that is amenable to unstructured data such as
text or even images. While it is possible to treat an unstructured data point
by first transforming it into amanageable form, i.e. a vector inℝ𝑑, by using
an auxiliary model to compute its embedding models that are trained end-
to-end, that is which incorporates this embedding phase directly, generally
outperform significantly models that are not. Given these remarks, in the
next chapter we will focus on novel neural methods for the estimation of
𝑆𝐶 (as well as 𝑓𝐶), that can be applied to complex and varied datasets.

2.8 Proofs
This section contains the proofs of the results given earlier. For the sake of
readability, those have been separated from the main body but the schema
of the proofs is sufficiently interesting in its own right to deserve its own
section instead of being relegated to appendix A.

2.8.1 Concentration Inequalities for vc Classes and
Permanence Properties

For completeness, concentration results as well as preservation properties
of vc classes, extensively used in the subsequent proofs, are recalled. For
the sake of generality, this section is independent from the rest of the
memoir. For a function 𝑓 ∶ 𝕊 ↦ ℝ, for𝔸 ⊆ 𝕊, we define

‖𝑓‖∞ = sup
𝑥∈𝕊
|𝑓(𝑥)| ,

‖𝑓‖𝔸 = sup
𝑥∈𝔸
|𝑓(𝑥)| .



2 Prediction and Censoring 68

Concentration inequalities over vc classes. The following concentra-
tion inequalities provide uniform bounds on empirical sums over vc
classes of functions. We start by recalling the definition of a vc class.

Definition 2.3 (vc covering). Let (𝕊, 𝒮) be a measurable space. A class ℱ
of real-valued functions defined on 𝕊 is called vc of parameter (𝐴, 𝑣) ∈
]0,∞[2 and constant envelope 𝑈ℱ > 0 if for any probability measure 𝒬 on
(𝕊, 𝒮) and any 𝜀 ∈]0, 1[:

𝒩(ℱ, 𝐿2(𝒬), 𝜀𝑈ℱ) ≤ (
𝐴
𝜀
)
𝑣
,

where𝒩(ℱ, 𝐿2(𝒬), 𝜀) denotes the smallest number of 𝐿2(𝒬)-balls of radius
less than 𝜀 required to cover classΦ (covering number), see e.g. Nolan and
D. Pollard (1987) and Giné and Guillou (2001).

The following inequality for empirical processes over vc classes is stated
in Einmahl and Mason (2000); Giné and Guillou (2001) under various
forms. The present version is taken from Giné and Sang (2010).

Lemma 2.10 (Uniform control of centred sums). Let 𝜉1, 𝜉2,… be i.i.d.
r.v.’s valued in a measurable space (𝕊, 𝒮) and 𝒰 be a class of functions on
𝕊, uniformly bounded and of VC-type with constant (𝐴, 𝑣) and envelope
𝑈 ∶ 𝕊 → ℝ. Set 𝜎2(𝑢) = 𝕍 [𝑢(𝜉1)] for all 𝑢 ∈ 𝒰. There exist constants
𝐶1 > 0, 𝐶2 ≥ 1, 𝐶3 > 0 (depending on 𝑣 and 𝐴) such that ∀𝑡 > 0, if

𝐶1𝜎√𝑛 log(
2 ‖𝑈‖∞
𝜎
) ≤ 𝑡 ≤ 𝑛𝜎

2

‖𝑈‖∞
, (2.38)

is satisfied, then

ℙ(|
𝑛

∑
𝑖=1
(𝑢 (𝜉𝑖) − 𝔼 [𝑢(𝜉𝑖)])|𝒰

> 𝑡) ≤ 𝐶2 exp(−𝐶3
𝑡2

𝑛𝜎2
) .

The previous result is extended to the case of degenerated 𝑈-processes
over vc classes (Major [2006], Theorem 2).

Lemma 2.11 (Uniform control of 𝑈-statistics). Let 𝜉1, 𝜉2,… be an i.i.d.
sequence of random variables taking their values in a measurable space (𝕊, 𝒮)
and distributed according to a probability measure ℙ. Let ℋ be a class of
functions on 𝕊𝑘 uniformly bounded such thatℋ is of vc type with constants
(𝐴, 𝑣) and envelope 𝐺. For any 𝐻 ∈ ℋ, set 𝜎2(𝐻) = 𝕍 [𝐻(𝜉1,…, 𝜉𝑘)] and
assume that for all 𝑗 ∈ {1,…, 𝑘}, with probability 1 we have

𝔼 [𝐻 (𝜉1,…, 𝜉𝑘) | 𝜉1,…, 𝜉𝑗−1, 𝜉𝑗+1,…, 𝜉𝑘] = 0. (2.39)
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Then, there exist constants 𝐶1 > 0, 𝐶2 ≥ 1, 𝐶3 > 0 (depending on 𝑣 and 𝐴)
such that for all 𝑡 > 0 satisfying

𝐶1𝜎(𝑛 log(
2‖𝐺‖∞
𝜎
))
𝑘/2
≤ 𝑡 ≤ 𝜎( 𝑛𝜎

‖𝐺‖∞
)
𝑘
, (2.40)

then

ℙ{| ∑
(𝑖1,…,𝑖𝑘)
𝐻(𝜉𝑖1 ,…, 𝜉𝑖𝑘 )|ℋ

> 𝑡} ≤ 𝐶2 exp(−𝐶3
1
𝑛
( 𝑡
𝜎
)
2/𝑘
) ,

where
‖𝐺‖2∞ ≥ 𝜎

2 ≥ ‖𝕍 [𝐻]‖2ℋ .

The following result is directly derived from that stated above by speci-
fying an appropriate value of 𝑡.

Corollary 2.12 (Uniform control of 𝑈-statistics (Alternate formulation)).
Let 𝜉1, 𝜉2,… be an i.i.d. sequence of random variables taking their values in
a measurable space (𝕊, 𝒮) and distributed according to a probability measure
ℙ. Let ℋ be a class of functions on 𝕊𝑘 uniformly bounded such that ℋ
is of vc type with constants (𝐴, 𝑣) and envelope 𝐺. For any 𝐻 ∈ ℋ, set
𝜎2(𝐻) = 𝕍 [𝐻(𝜉1,…, 𝜉𝑘)] and assume that with probability 1, and for
all 𝑗 ∈ {1,…, 𝑘},

𝔼 [𝐻 (𝜉1,…, 𝜉𝑘) | 𝜉1,…, 𝜉𝑗−1, 𝜉𝑗+1,…, 𝜉𝑘] = 0.

Then, there exist constants 𝐶1 > 0 , 𝐶2 ≥ 1 , 𝐶3 > 0 (depending on 𝑣 and 𝐴)
such that

ℙ(‖ ∑
(𝑖1,…,𝑖𝑘)
𝐻(𝜉𝑖1 ,…, 𝜉𝑖𝑘 )‖

ℋ

≤ 𝑡(𝑛, 𝜎, 𝜀)) ≥ 1 − 𝜀,

with

𝑡(𝑛, 𝜎, 𝜀) = 𝜎𝑛𝑘/2 (𝐶1 (log(
2‖𝐺‖∞
𝜎
))
𝑘/2
+ ( log(𝐶2/𝜀)
𝐶3
)
𝑘/2
) ,

provided that

‖𝐺‖2∞ (𝐶
2/𝑘
1 log(2‖𝐺‖∞

𝜎
) + log(𝐶2/𝜀)
𝐶3
) ≤ 𝑛𝜎2,

sup
𝐻∈ℋ
𝜎2(𝐻) ≤ 𝜎2 ≤ ‖𝐺‖2∞ .
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vc type classes of functions - Permanence properties. In the subse-
quent sections, several results are obtained by applying the concentration
bounds recalled above to specific classes of functions built up from the
elements of the class Φ and other functions such as 𝐾ℎ(𝑥), 𝑆𝐶(𝑢 ∣ 𝑥) or
𝑔(𝑥). To show that these specific classes are VC, we rely on the following
lemmas which exhibits situations where the vc type property is preserved,
while controlling the constants (𝐴, 𝑣) involved. In what follows the kernel
𝐾 is assumed to satisfy the hypotheses introduced in §2.3.

Lemma 2.13 (see Nolan and D. Pollard (1987), Lemma 22, Assertion (ii)).
The class

{𝑧 ↦ 𝐾(𝑥 − 𝑧
ℎ
) ∶ 𝑥 ∈ ℝ𝑑, ℎ > 0} ,

is a bounded vc class of functions.

The following result is an extension of a result established in the proof
of Proposition 8 in Portier and Segers (2018).

Lemma 2.14 (Marginal vc class). Let (𝑉,𝑊) be a pair of random variables
taking their values in ℝ𝑞 and in ℝ𝑑 respectively, denote by 𝑓0(𝑣 ∣ 𝑊) the
density of the conditional distribution of the random variable 𝑉 given𝑊,
supposed to be absolutely continuous w.r.t. Lebesgue measure on ℝ𝑞. Let ℱ
be a bounded vc class of functions defined onℝ𝑞×ℝ𝑑 with parameter (𝐴, 𝑣)
and constant envelope 𝑈ℱ. The class 𝒢 = {𝑤 ∈ ℝ𝑑 ↦ 𝔼[𝑓(𝑉,𝑊) ∣ 𝑊 =
𝑤] ∶ 𝑓 ∈ ℱ} is a bounded vc class of functions with parameter (𝐴, 𝑣) and
constant envelope 𝑈ℱ.

Proof. Let 𝒬 be a probability measure on ℝ𝑑. Consider �̃� the probability
measure defined through

d�̃�(𝑣) = ∫𝑓0(𝑣 ∣ 𝑤) 𝒬(d𝑤) d𝑣.

Let 𝜀 ∈ (0, 1) and consider the centres 𝑓1,…, 𝑓𝑁 of an 𝜀𝑈ℱ-covering of the
vc classℱ with respect to the metric 𝐿2(�̃�). Let 𝑔 ∈ 𝒢, i.e., 𝑔 ∶ 𝑤 ∈ ℝ𝑑 ↦
𝔼[𝑓(𝑉,𝑊) ∣ 𝑊 = 𝑤] with 𝑓 in ℱ. Define 𝑔𝑘 = 𝔼[𝑓𝑘(𝑉,𝑊) ∣ 𝑊 = 𝑤],
for 𝑘 = 1,…,𝑁. There exists 𝑘 ∈ {1,…,𝑁} such that

∫(𝑔(𝑤) − 𝑔𝑘(𝑤))
2 𝒬(d𝑤)

≤ ∫𝔼 [(𝑓(𝑉,𝑊) − 𝑓𝑘(𝑉,𝑊))
2 ∣ 𝑊 = 𝑤] 𝒬(d𝑤)

= ∬(𝑓(𝑣, 𝑤) − 𝑓𝑘(𝑣, 𝑤))
2 𝑓0(𝑣 ∣ 𝑤) d𝑣𝒬(d𝑤)

= ∫(𝑓(𝑣, 𝑤) − 𝑓𝑘(𝑣, 𝑤))
2 �̃�(d𝑣)

≤ 𝜀2𝑈2ℱ,
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using Jensen’s inequality and Fubini’s theorem. Consequently, we have:

𝒩(𝒢, 𝐿2(𝒬), 𝜀𝑈ℱ) ≤ 𝒩(ℱ, 𝐿2(�̃�), 𝜀𝑈ℱ) ≤ (
𝐴
𝜀
)
𝑣
.

Since the constant𝑈ℱ is an envelope for the class𝒢, the result is established.

Lemma 2.15 (Kernel integral vc class). Let Ψ be a vc class of functions
defined onℝ𝑞 ×ℝ𝑑 with constant envelope 𝑈 > 0 that satisfies the following
Lipschitz property: for all 𝜓 ∈ Ψ, 𝑧 ∈ ℝ𝑞, (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ𝑑,

|𝜓(𝑧, 𝑥) − 𝜓(𝑧, 𝑦)| ≤ 𝜅 ‖𝑥 − 𝑦‖ ,

with 𝜅 > 0. Let 𝐾 ∶ ℝ𝑑 → ℝ be a positive function such that ∫𝐾(𝑢) d𝑢 = 1
and 𝑣𝐾 = ∫‖𝑢‖2𝐾(𝑢) d𝑢 < ∞. The class ℱ = {(𝑧, 𝑥) ↦ ∫𝜓(𝑧, 𝑥 −
ℎ𝑢)𝐾(𝑢) d𝑢 ∶ 𝜓 ∈ Ψ, 0 < ℎ ≤ ℎ̃} is a bounded measurable vc class of
functions with constant envelope (𝜅ℎ̃√𝑣𝐾 + 𝑈).

Proof. Let 0 < 𝜀 ≤ 1 and ℎ𝑘 = 𝑘𝜀ℎ̃, 𝑘 = 1,…, ⌊1/𝜀⌋, an (𝜀ℎ̃)-subdivision of
the interval ]0, ℎ̃]. Let 𝒬 be a probability measure on ℝ𝑞 × ℝ𝑑. For each 𝑘,
define 𝜇𝑘 as the probability measure of the random variable (𝑍,𝑋 − ℎ𝑘𝑈)
when (𝑍,𝑋,𝑈) ∼ 𝒬 × 𝒦. Let Ψ𝑘,𝑗, 𝑗 = 1,…,𝑁 be an 𝜀𝑈-cover of the
function class Ψ with respect to 𝐿2(𝜇𝑘). Let ℎ ∈]0, ℎ̃] and 𝜓 ∈ Ψ. For any
measurable function 𝑓 and any 𝑘, we have

‖∫𝑓(𝑧, 𝑥 − ℎ𝑘𝑢)𝐾(𝑢) d𝑢‖
𝐿2(𝒬)
≤ ‖𝑓‖𝐿2(𝜇𝑘).

As a consequence, for each 𝑘 there exists 𝑗 such that

‖∫(𝜓(𝑧, 𝑥 − ℎ𝑘𝑢) − 𝜓𝑘,𝑗(𝑧, 𝑥 − ℎ𝑘𝑢))𝐾(𝑢) d𝑢‖
𝐿2(𝒬)
≤ 𝜀𝑈,

Besides, from the Lipschitz property, there exists 𝑘 such that

‖∫(𝜓(𝑧, 𝑥 − ℎ𝑢) − 𝜓(𝑧, 𝑥 − ℎ𝑘𝑢))𝐾(𝑢) d𝑢‖
𝐿2(𝒬)
≤ 𝜀𝜅ℎ̃√𝑣𝐾,

The triangle inequality allows claiming that there exists 𝑗 and 𝑘 such that

‖∫(𝜓(𝑧, 𝑥 − ℎ𝑢) − 𝜓𝑘,𝑗(𝑧, 𝑥 − ℎ𝑘𝑢))𝐾(𝑢) d𝑢‖
𝐿2(𝒬)
= 𝜀(𝜅ℎ̃√𝑣𝐾 + 𝑈).

There are 1/𝜀 × 𝐴𝜀−𝑣 such functions Ψ𝑘,𝑗 meaning that

𝒩(ℱ, ‖⋅‖𝐿2(𝒬) , 𝜀(𝜅ℎ̃√𝑣𝐾 + 𝑈)) ≤ 𝐴𝜀
−(𝑣+1),

where (𝜅ℎ̃√𝑣𝐾 + 𝑈) is indeed an envelope for the classℱ.
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We conclude the section by a preservation result for the product and
the inverse.

Lemma 2.16 (Permanence of vc class). Suppose that ℱ and 𝒢 are two vc
classes defined on 𝕊 with parameters (𝐴ℱ, 𝑣ℱ) and (𝐴𝒢, 𝑣𝒢) and constant
envelopes 𝑈ℱ and 𝑈𝒢, respectively. Then it holds:

(i) The class ℱ𝒢 = {𝑓𝑔 ∶ 𝑓 ∈ ℱ, 𝑔 ∈ 𝒢} is vc with parameter (2(𝐴ℱ ∨
𝐴𝒢), 𝑣ℱ + 𝑣𝒢) and envelope 𝑈ℱ𝑈𝒢.

(ii) In addition, if for all 𝑓 ∈ ℱ and 𝑥 ∈ 𝕊, 𝑓(𝑥) ≥ 𝑏ℱ, then the class
ℱ−1 = {1/𝑓 ∶ 𝑓 ∈ ℱ, 𝑔 ∈ 𝒢} is vc with parameters (𝐴ℱ𝑈ℱ/𝑏ℱ, 𝑣ℱ)
and envelope 1/𝑏ℱ.

Proof. Let 0 < 𝜀 ≤ 1 and 𝑓𝑘, 𝑘 = 1,…,𝑁ℱ the centres of an (𝜀𝑈ℱ)-
covering of ℱ. Similarly, denote by 𝑔𝑘, 𝑘 = 1,…,𝑁𝒢 the centres of an
(𝜀𝑈𝒢)-covering of 𝒢. By applying the operation (𝑓𝑘 ∧𝑈ℱ) ∨ (−𝑈ℱ), we can
assume without loss of generality that the 𝑓𝑘 (resp. 𝑔𝑘) are bounded by𝑈ℱ
(resp. 𝑈𝒢). Then for any 𝑓 ∈ ℱ and 𝑔 ∈ 𝒢, there are 𝑘 ∈ {1,…,𝑁ℱ} and
𝑗 ∈ {1,…,𝑁𝒢} such that

‖𝑓𝑔 − 𝑓𝑘𝑔𝑗‖ ≤ 𝑈𝒢 ‖𝑓 − 𝑓𝑘‖ + 𝑈ℱ ‖𝑔 − 𝑔𝑗‖ ≤ 2𝜀𝑈𝒢𝑈ℱ,

which implies that

𝒩(ℱ𝒢, 𝐿2(𝑄), 2𝜀𝑈𝒢𝑈ℱ) ≤ (
𝐴ℱ
𝜀
)
𝑣ℱ
(
𝐴𝒢
𝜀
)
𝑣𝒢

Taking 𝜀′ = 2𝜀 gives the result. For the second point, taking 𝑓𝑘 ≥ 𝑏ℱ, we
have

‖𝑓−1 − 𝑓−1𝑘 ‖ ≤
1
𝑏2ℱ
‖𝑓 − 𝑓𝑘‖ ≤

𝑈ℱ
𝑏2ℱ
𝜀,

and the result follows taking 𝜀′ = (𝑈ℱ/𝑏ℱ)𝜀.

2.8.2 Integration results
In this sectionwe establish useful bounds related to these quantities: kernel
smoothers, integrals with respect to signed measures, survival functions
and hazard functions namely. This corresponds to Lemmas 2.17 to 2.20,
respectively. As the previous section, this section is independent from the
rest of the paper.

Lemma 2.17 (Kernel approximation error bound). Let 𝜔 an open convex
subset of ℝ𝑑. Suppose that 𝑓 is twice differentiable on 𝜔 such that the
greatest eigenvalue of the Hessian matrix is uniformly bounded by𝑀 > 0,
then, if the kernel𝐾 is symmetric, i.e.,𝐾(𝑢) = 𝐾(−𝑢), we have: for all ℎ > 0,

sup
𝑥∈𝜔
|(𝐾ℎ ∗ 𝑓)(𝑥) − 𝑓(𝑥)| ≤

𝑀
2
ℎ2 ∫‖𝑧‖2𝐾(𝑧) d𝑧. (2.41)



2 Prediction and Censoring 73

Proof. The proof follows the same lines as the proof of Lemma 11 given in
Delyon and Portier (2020).

Lemma 2.18 (Dudley’s lemma). Let 𝜃 ∈ (0, 1), ℎ ∶ ℝ+ → [1, ∞[ be
Borelian, increasing, with limit 1/𝜃 at +∞ and 𝜈 be any signed measure
on ℝ+. Then, we have: ∀𝑇 > 0, ∀𝑡 ∈ [0, 𝑇],

|∫
𝑡

0
ℎ d𝜈| ≤ 2

𝜃
sup
𝑠∈[0,𝑇]
|∫
𝑠

0
d𝜈| .

Proof. Recall first the identity

sup
𝑡≥0
|∫
𝑡

0
d𝜈| = sup

𝑓∈DE
|∫𝑓 d𝜈| , (2.42)

where DE is the space of non-increasing functions valued in [0, 1] and
vanishing at infinity (see e.g. Dudley [1992]). Since ℎ is increasing from
1 to 1/𝜃, we have for any signed measure 𝜈 (whose restriction to [0, 𝑇] is
denoted by 𝜈[0,𝑇]),

|∫
𝑡

0
ℎ d𝜈| = 1

𝜃
|∫
𝑡

0
d𝜈 + 𝜃∫

𝑡

0
(ℎ − 𝜃−1) d𝜈|

≤ 2
𝜃
sup
𝑓∈DE
|∫𝑓 d𝜈[0,𝑇]| .

Then applying eq. (2.42) we obtain that

|∫
𝑡

0
ℎ d𝜈| ≤ 2

𝜃
sup
𝑠≥0
|∫
𝑠

0
d𝜈[0,𝑇]|

= 2
𝜃

sup
𝑠∈[0,𝑇]
|∫
𝑠

0
d𝜈| .

Lemma 2.19 (Survival difference’s bound). Let 𝜏 > 0. Let 𝑆(1) and 𝑆(2)
be càdlàg non-increasing functions on ℝ+ such that 𝑆(1)(0) = 𝑆(2)(0) = 1
and 𝑆(2)(𝜏) ≥ 𝜃 > 0. For 𝑘 ∈ {1, 2}, with corresponding cumulative hazard
function

𝜆(𝑘)(𝑡) = −∫
𝑡

0

𝑆(𝑘)(d𝑢)
𝑆(𝑘)(𝑢−)

,

We have:
‖𝑆(1) − 𝑆(2)‖

[0,𝜏]
≤ 2
𝜃
‖Λ(1) − Λ(2)‖

[0,𝜏]
.
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Proof. Let 𝑡 ∈ [0, 𝜏]. As 𝑆(2)(𝑡) > 0, the integration by part argument of
Fleming and Harrington (1991), Theorem 3.2.3 yields

𝑆(1)(𝑡) − 𝑆(2)(𝑡)
𝑆(2)(𝑡)

= −∫
𝑡

0

𝑆(1)(𝑢−)
𝑆(2)(𝑢)

(Λ(1)(d𝑢) − Λ(2)(d𝑢))

= −∫
𝑡

0
𝑆(1)(𝑢−)Δ1(d𝑢), (2.43)

where we set

Δ1(d𝑢) =
Λ(1)(d𝑢) − Λ(2)(d𝑢)
𝑆(2)(𝑢)

.

We then apply the integration by parts formula (refer to Shorack and
Wellner [2009], page 305, for instance) to get

𝑆(1)(𝑡) − 𝑆(2)(𝑡)
𝑆(2)(𝑡)

= −𝑆(1)(𝑡)Δ1(𝑡) + ∫
𝑡

0
Δ1(𝑢)𝑆(1)(d𝑢).

Then, as 𝑆(2)(𝑡) ≤ 1, we obtain that

|𝑆(1)(𝑡) − 𝑆(2)(𝑡)| ≤ (𝑆(1)(𝑡) |Δ1(𝑡)| + (1 − 𝑆(1)(𝑡)) sup
𝑢∈[0,𝜏]
|Δ1(𝑢)|)

≤ sup
𝑢∈[0,𝜏]
|Δ1(𝑢)| .

We conclude by using Lemma 2.18 with d𝜈 = d(Λ(1) − Λ(2)) and ℎ =
1/𝑆(2).

Lemma 2.20. Let 0 < 𝜃1, 𝜃2 < 1 and 𝜏 > 0. For 𝑘 ∈ {1, 2}, define

𝜆(𝑘)(𝑡) = ∫
𝑡

0

𝐺(𝑘)(d𝑢)
𝐻(𝑘)(𝑢)

,

where 𝐺(𝑘) ∶ [0, 𝜏] ↦ [0, 𝛽] is càdlàg non-decreasing and 𝐻(𝑘) ∶ [0, 𝜏] →
[𝜃𝑘, 1] is Borelian non-increasing. Then, we have:

‖Λ(1) − Λ(2)‖
[0,𝜏]
≤ 2
𝜃1
‖𝐺(1) − 𝐺(2)‖

[0,𝜏]
+ 𝛽
𝜃1𝜃2
‖𝐻(1) − 𝐻(2)‖

[0,𝜏]
.

Proof. Let 𝑡 ∈ [0, 𝜏]. Observe that, by triangular inequality,

|Λ(1)(𝑡) − Λ(2)(𝑡)| = |∫
𝑡

0

d(𝐺(1) − 𝐺(2))
𝐻(1)

+ ∫
𝑡

0

𝐻(2) − 𝐻(1)

𝐻(1)𝐻(2)
d𝐺(2)|

≤ 2
𝜃1
‖𝐺(1) − 𝐺(2)‖

[0,𝜏]
+ 𝛽
𝜃1𝜃2
‖𝐻(2) − 𝐻(1)‖

[0,𝜏]
,
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where the bound for the second term on the right-hand side is straightfor-
ward and that for the first term can be deduced from the application of
Lemma 2.18 with the measure 𝜈 equal to 𝐴 ↦ ∫

𝐴
d(𝐺(1) − 𝐺(2)) and the

function ℎ equal to 1/𝐻(1).

Lemma 2.21. Let 𝜏 > 0. Let 𝑆(1) and 𝑆(2) be càdlàg non-increasing functions
on ℝ+ such that 𝑆(1)(0) = 𝑆(2)(0) = 1 and 𝑆(2)(𝜏) ≥ 𝜃 > 0. For 𝑘 ∈ {1, 2},
define 𝜆(𝑘)(𝑡) = − ∫𝑡

0
𝑆(𝑘)(𝑢−)𝑆(𝑘)(d𝑢) and suppose that

𝜆(𝑘)(𝑡) = ∫
𝑡

0

𝐺(𝑘)(d𝑢)
𝐻(𝑘)(𝑢)

,

where 𝐺(𝑘) ∶ [0, 𝜏] → [0, 𝛽] and 𝐻(𝑘) ∶ [0, 𝜏] → [𝜃, 1] are respectively
non-decreasing and non-increasing borelian functions. Then, there exists a
constant 𝐶𝜃,𝛽 > 0, depending only on 𝜃 and 𝛽, such that

sup
𝑡∈[0,𝜏]
|∫
𝑡

0

𝑆(1)(𝑢−) − 𝑆(2)(𝑢−)
𝑆(2)(𝑢)

(Λ(1)(d𝑢) − Λ(2)(d𝑢))|

≤ 𝐶𝜃,𝛽 (‖𝐻(1) − 𝐻(2)‖
2

[0,𝜏]
+ ‖𝐺(1) − 𝐺(2)‖2

[0,𝜏]
+ ‖𝑊‖[0,𝜏]) ,

where

𝑊(𝑡) = ∫
𝑡

𝑢=0
∫
𝑢

𝑠=0

𝑆(2)(𝑠−) (𝐺(1)(d𝑠) − 𝐺(2)(d𝑠))
𝑆(2)(𝑠)𝐻(2)(𝑠)

d (𝐺(1)(d𝑢) − 𝐺(2)(d𝑢))
𝑆(2)(𝑢)𝐻(2)(𝑢)

.

Proof. The proof consists in showing first that there exist constants 𝐶1,𝜃,𝛽
and 𝐶2,𝜃,𝛽 such that

sup
𝑡∈[0,𝜏]
|∫
𝑡

0

̂𝑆(1)(𝑢−) − 𝑆(2)(𝑢−)
𝑆(2)(𝑢)

(Λ(1)(d𝑢) − Λ(2)(d𝑢))|

≤ 𝐶1,𝜃,𝛽 (‖𝐺(1) − 𝐺(2)‖
2

[0,𝜏]
+ ‖𝐻(1) − 𝐻(2)‖2

[0,𝜏]
) + ‖Π‖[0,𝜏] , (2.44)

where

Π(𝑡) = ∫
𝑡

0
Δ2(𝑢)Δ1(d𝑢),

Δ2(𝑡) = ∫
𝑡

0
𝑆(2)(𝑢−)Δ1(d𝑢),

Δ1(𝑡) = ∫
𝑡

0
𝑆(2)(𝑢)−1Δ(d𝑢),

Δ = Λ(1) − Λ(2),
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and next that

|Π −𝑊|[0,𝜏] ≤ 𝐶2,𝜃,𝛽 (|𝐻
(1) − 𝐻(2)|2

[0,𝜏]
+ |𝐺(1) − 𝐺(2)|2

[0,𝜏]
) . (2.45)

In order to establish eq. (2.44), we successively apply eq. (2.43), Fubini’s
theorem and the integration by part formula:

∫
𝑡

𝑢=0
(𝑆(1)(𝑢−) − 𝑆(2)(𝑢−)) Δ1(d𝑢)

= −∫
𝑡

𝑢=0
∫
𝑢−

𝑣=0
𝑆(1)(𝑣−)Δ1(d𝑣)𝑆(2)(𝑢−)Δ1(d𝑢)

= −∫
𝑡

𝑣=0
(∫
𝑡

𝑢=𝑣
𝑆(2)(𝑢−)Δ1(d𝑢)) 𝑆(1)(𝑣−)Δ1(d𝑣)

= −Δ2(𝑡) ∫
𝑡

0
𝑆(1)(𝑣−)Δ1(d𝑣) + ∫

𝑡

0
𝑆(1)(𝑣−)Π(d𝑣)

= − Δ2(𝑡) (𝑆(1)(𝑡)Δ1(𝑡) − ∫
𝑡

0
Δ1(𝑢)𝑆(1)(d𝑢))

+ 𝑆(1)(𝑡)Π(𝑡) − ∫
𝑡

0
Π(𝑢)𝑆(1)(d𝑢)

≤ 2 ‖Δ2‖[0,𝜏] ‖Δ1‖[0,𝜏] + 2 ‖Π‖[0,𝜏] . (2.46)

From eq. (2.42), we deduce that ‖Δ2‖[0,𝜏] ≤ ‖Δ1‖[0,𝜏] (because 𝑆(2)𝟙[0,𝜏]
belongs to the space DE) and, from Lemma 2.18, it follows that ‖Δ1‖[0,𝜏] ≤
2𝜃−1‖𝛿‖[0,𝜏]. Apply next Lemma 2.20 to obtain

‖Δ2‖[0,𝜏] ‖Δ1‖[0,𝜏] ≤
8
𝜃2
( 4
𝜃2
‖𝐺(1) − 𝐺(2)‖2

[0,𝜏]
+ 𝛽
2

𝜃4
‖𝐻(1) − 𝐻(2)‖2

[0,𝜏]
) .

Combined with eq. (2.46), this proves eq. (2.44). For eq. (2.45), the appli-
cation of the Taylor expansion

1
𝑥
= 1
𝑎
− 𝑥 − 𝑎
𝑎2
+ (𝑥 − 𝑎)

2

𝑥𝑎2
(2.47)

yields

dΔ =
d(𝐺(1) − 𝐺(2))
𝐻(2)

−
(𝐻(1) − 𝐻(2)) d𝐺(1)

(𝐻(2))2
+
(𝐻(1) − 𝐻(2))2 d𝐺(1)

(𝐻(2))2𝐻(1)
.
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Set 𝑐(𝑠) = 𝑆(2)(𝑠−)/𝑆(2)(𝑠). It follows that

Π(𝑡) = ∫
𝑡

𝑢=0
∫
𝑢

𝑠=0
𝑐(𝑠)(𝐺

(1)(d𝑠) − 𝐺(2)(d𝑠)
𝐻(2)(𝑠)

−
(𝐻(1)(𝑠) − 𝐻(2)(𝑠)) 𝐺(1)(d𝑠)

𝐻(2)(𝑠)2

+
(𝐻(1)(𝑠) − 𝐻(2)(𝑠))2 𝐺(1)(d𝑠)
𝐻(2)(𝑠)2𝐻(1)(𝑠)

)Δ1(d𝑢).

Observe that

Π(𝑡) − 𝑊(𝑡) =

− ∫
𝑡

𝑢=0
∫
𝑢

𝑠=0
𝑐(𝑠)𝐺
(1)(d𝑠) − 𝐺(2)(d𝑠)
𝐻(2)(𝑠)

(𝐻(1)(𝑢) − 𝐻(2)(𝑢)) 𝐺(1)(d𝑢)
𝑆(2)(𝑢)𝐻(1)(𝑢)𝐻(2)(𝑢)

+ ∫
𝑡

𝑢=0
∫
𝑢

𝑠=0
𝑐(𝑠)
(𝐻(1)(𝑠) − 𝐻(2)(𝑠)) 𝐺(1)(d𝑠)

𝐻(2)(𝑠)2

⨯
(𝐻(1)(𝑢) − 𝐻(2)(𝑢)) 𝐺(1)(d𝑢)
𝑆(2)(𝑢)𝐻(1)(𝑢)𝐻(2)(𝑢)

− ∫
𝑡

𝑢=0
∫
𝑢

𝑠=0
𝑐(𝑠)
(𝐻(1)(𝑠) − 𝐻(2)(𝑠)) 𝐺(1)(d𝑠)

𝐻(2)(𝑠)2
𝐺(1)(d𝑢) − 𝐺(2)(d𝑢)
𝑆(2)(𝑢)𝐻(2)(𝑢)

+ ∫
𝑡

𝑢=0
∫
𝑢

𝑠=0

(𝐻(1)(𝑠) − 𝐻(2)(𝑠))2 𝐺(1)(d𝑠)
𝐻(2)(𝑠)2𝐻(1)(𝑠)

Δ1(d𝑢)

= 𝐴 + 𝐵 + 𝐶 + 𝐷.

We next bound each term on the right-hand side of the equation above.
Successively apply Lemma 2.18 and eq. (2.42) to get

|∫
𝑢

0
𝑐(𝑠)𝐺
(1)(d𝑠) − 𝐺(2)(d𝑠)
𝐻(2)(𝑠)

|

≤ 2
𝜃2

sup
𝑢
|∫
𝑢

0
𝑆(2)(𝑠−)(𝐺(1)(d𝑠) − 𝐺(2)(d𝑠))|

= 2
𝜃2

sup
𝑢
|∫ 𝑆(2)(𝑠−)𝟙𝑠≤𝑢 (𝐺(1)(d𝑠) − 𝐺(2)(d𝑠))|

≤ 2
𝜃2
‖𝐺(1) − 𝐺(2)‖

[0,𝜏]
.

Because, for any 𝑢 ∈ [0, 𝜏] we have that

1
𝑆(2)(𝑢)𝐻(1)(𝑢)𝐻(2)(𝑢)

≤ 1
𝜃3
,
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we can write

|𝐴| ≤ 1
𝜃3
∫
𝑡

𝑢=0
|∫
𝑢

𝑠=0
𝑐(𝑠)𝐺
(1)(d𝑠) − 𝐺(2)(d𝑠)
𝐻(2)(𝑠)

|

× |𝐻(1)(𝑢) − 𝐻(2)(𝑢)| 𝐺(1)(d𝑢)

≤ 1
2𝜃3
∫
𝑡

𝑢=0
(∫
𝑢

0
𝑐(𝑠)𝐺
(1)(d𝑠) − 𝐺(2)(d𝑠)
𝐻(2)(𝑠)

)
2

+ (𝐻(1)(𝑢) − 𝐻(2)(𝑢))2 𝐺(1)(d𝑢)

≤ 𝛽 ( 2
𝜃7
‖𝐺(1) − 𝐺(2)‖2

[0,𝜏]
+ ‖𝐻(1) − 𝐻(2)‖2

[0,𝜏]
) .

In addition, because for any 𝑢 ∈ [0, 𝜏], 𝑐(𝑢)/(𝐻(2)(𝑢))2 ≤ 1/𝜃3 we have:
∀𝑡 ∈ [0, 𝜏],

|𝐵| ≤ ( 1
𝜃3
)
2
∫
𝑡

𝑢=0
∫
𝑡

𝑠=0
|𝐻(1)(𝑠) − 𝐻(2)(𝑠)| 𝐺(1)(d𝑠)

⨯ |𝐻(1)(𝑢) − 𝐻(2)(𝑢)| 𝐺(1)(d𝑢)

= 1
𝜃6
(∫
𝑡

𝑠=0
|𝐻(1)(𝑠) − 𝐻(2)(𝑠)| 𝐺(1)(d𝑠))

2

≤ 𝛽
2

𝜃6
‖𝐻(1) − 𝐻(2)|2

[0,𝜏]
.

If we define

𝛾2(𝑡) = ∫
𝑡

0

𝐺(1)(d𝑢) − 𝐺(2)(d𝑢)
𝑆(2)(𝑢)𝐻(2)(𝑢)

,

we can apply Fubini’s theorem and get

|𝐶| = |∫
𝑡

𝑢=0
∫
𝑢

𝑠=0
𝑐(𝑠)
(𝐻(1)(𝑠) − 𝐻(2)(𝑠)) 𝐺(1)(d𝑠)

𝐻(2)(𝑠)2
𝐺(1)(d𝑢) − 𝐺(2)(d𝑢)
𝑆(2)(𝑢)𝐻(2)(𝑢)

|

= |∫
𝑡

𝑠=0
∫
𝑡

𝑢=𝑠

𝐺(1)(d𝑢) − 𝐺(2)(d𝑢)
𝑆(2)(𝑢)𝐻(2)(𝑢)

𝑐(𝑠)
(𝐻(1)(𝑠) − 𝐻(2)(𝑠)) 𝐺(1)(d𝑠)

(𝐻(2)(𝑠))2
|

≤ 1
𝜃3
∫
𝑡

𝑠=0
|𝛾2(𝑡) − 𝛾2(𝑠)| × |𝐻(1)(𝑠) − 𝐻(2)(𝑠)| 𝐺(1)(d𝑠)

≤ 2𝛽
𝜃3
‖𝛾2‖[0,𝜏] × ‖𝐻

(1) − 𝐻(2)‖
[0,𝜏]
.

Then, using Lemma 2.18, it follows that

|𝐶| ≤ 4𝛽
𝜃6
‖𝐺(1) − 𝐺(2)‖

[0,𝜏]
‖𝐻(1) − 𝐻(2)‖

[0,𝜏]

≤ 2𝛽
𝜃6
(‖𝐺(1) − 𝐺(2)‖2

[0,𝜏]
+ ‖𝐻(1) − 𝐻(2)‖2

[0,𝜏]
) .
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The last term can be treated bymeans of Fubini’s theorem. Indeed, because
‖Δ1‖[0,𝜏] ≤ 2𝛽/𝜃 and for any 𝑢 ∈ [0, 𝜏], 1/(𝐻(2)(𝑢)2𝐻(1)(𝑢)) ≤ 1/𝜃3, we
have

|𝐷| = |

|
∫
𝑡

𝑢=0
∫
𝑢

𝑠=0

(𝐻(1)(𝑠) − 𝐻(2)(𝑠))2 𝐺(1)(d𝑠)
(𝐻(2)(𝑠))2𝐻(1)(𝑠)

Δ1(d𝑢)|

|

≤ ∫
𝑡

𝑠=0
|

|
(∫
𝑡

𝑢=𝑠
Δ1(d𝑢))

(𝐻(1)(𝑠) − 𝐻(2)(𝑠))2 𝐺(1)(d𝑠)
𝐻(2)(𝑠)2𝐻(1)(𝑠)

|

|

≤ 2𝛽
𝜃3
‖Δ1‖[0,𝜏] × ‖𝐻

(1) − 𝐻(2)‖2
[0,𝜏]

≤ 4𝛽
2

𝜃4
‖𝐻(1) − 𝐻(2)‖2

[0,𝜏]
.

Putting all this together, the triangular inequality leads to eq. (2.45) .

2.8.3 Proof of Theorem 2.6
We start by establishing 3 useful lemmas, namely Lemmas 2.22 to 2.24.
Then the proof will follow easily. Define

𝐻0,ℎ(𝑦, 𝑥) = 𝔼 [�̂�0,𝑛(𝑦, 𝑥)] ,

𝐻ℎ(𝑦, 𝑥) = 𝔼 [�̂�𝑛(𝑦, 𝑥)] ,

and

𝐻0(𝑦, 𝑥) = 𝐻0(𝑦 ∣ 𝑥)𝑔(𝑥),
𝐻(𝑦, 𝑥) = 𝐻(𝑦 ∣ 𝑥)𝑔(𝑥).

Lemma 2.22. Under Assumption 2.2, there exists 𝐶0 > 0 depending only
on 𝐾 and 𝐿 such that for all ℎ > 0,

sup
(𝑡,𝑥)∈ℝ+×ℝ𝑑

|𝐻0,ℎ(𝑡, 𝑥) − 𝐻0(𝑡, 𝑥)| ≤ 𝐶0ℎ2, (2.48)

sup
(𝑡,𝑥)∈ℝ+×ℝ𝑑

|𝐻ℎ(𝑡, 𝑥) − 𝐻(𝑡, 𝑥)| ≤ 𝐶0ℎ2.

Proof. The proof results from the application of Lemma 2.17 combined
with the smoothness assumptions stipulated.
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Lemma 2.23. Under Assumption 2.2, There exist constants𝑀1 > 0 and
ℎ0 > 0 depending only on 𝐾 and 𝐿 such that:

ℙ( sup
(𝑡,𝑥)∈ℝ+×ℝ𝑑

|�̂�0,𝑛(𝑡, 𝑥) − 𝐻0,ℎ(𝑡, 𝑥)| ≤ √
𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

) ≥ 1 − 𝜀,

ℙ( sup
(𝑡,𝑥)∈ℝ+×ℝ𝑑

|�̂�𝑛(𝑡, 𝑥) − 𝐻ℎ(𝑡, 𝑥)| ≤ √
𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

) ≥ 1 − 𝜀,

provided that ℎ ≤ ℎ0 and𝑀1| log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑.

Proof. The exponential inequalities stated above directly result from the
application of Corollary 2.12 to the uniformly bounded vc-type classes
(see Lemmas 2.13 and 2.16)

{(𝑦, 𝑥′) ↦ 𝐾(𝑥 − 𝑥
′

ℎ
)𝟙𝑦>𝑢 ∶ (𝑥, 𝑢, ℎ) ∈ ℝ𝑑 × ℝ+ × ℝ∗+} ,

{(𝑦, 𝛿, 𝑥′) ↦ 𝐾(𝑥 − 𝑥
′

ℎ
)𝟙𝑦>𝑢,𝛿=0 ∶ (𝑥, 𝑢, ℎ) ∈ ℝ𝑑 × ℝ+ × ℝ∗+} ,

whose vc constants are independent fromℎ, with constant envelope ||𝐾||∞,
with 𝑘 = 1 and 𝜎2 = 𝑐2𝐾,𝐿ℎ𝑑 with 𝑐𝐾,𝐿 = √𝐿∫𝐾2(𝑥) d𝑥. This gives that

ℙ( sup
(𝑡,𝑥)∈ℝ+×ℝ𝑑

|�̂�0,𝑛(𝑡, 𝑥) − 𝐻0,ℎ(𝑡, 𝑥)| ≤ 𝑡) ≥ 1 − 𝜀,

ℙ( sup
(𝑡,𝑥)∈ℝ+×ℝ𝑑

|�̂�𝑛(𝑡, 𝑥) − 𝐻ℎ(𝑡, 𝑥)| ≤ 𝑡) ≥ 1 − 𝜀,

with

𝑡 =
𝑐𝐾,𝐿
√𝑛ℎ𝑑
(( 1
𝐶3

log(𝐶2
𝜀
))
1/2
+ 𝐶1 (log(

2‖𝐾‖∞
𝑐𝐾,𝐿ℎ𝑑/2

))
1/2

) ,

provided that ℎ𝑑/2𝑐𝐾,𝐿 ≤ ||𝐾||∞ and

‖𝐾‖2∞
𝑐2𝐾,𝐿
( 1
𝐶3

log(𝐶2
𝜀
) + 𝐶21 log(

2‖𝐾‖∞
𝑐𝐾,𝐿ℎ𝑑/2

)) ≤ 𝑛ℎ𝑑.

Since, for any positive numbers 𝑎, 𝑏, 𝛾, it holds that 𝑎𝛾 + 𝑏𝛾 ≤ 2𝛾(𝑎 + 𝑏)𝛾,
we find, taking ℎ0 sufficiently small, that

𝑡2 ≤
𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

,
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for some constant𝑀1 > 0. Finally, taking ℎ0 sufficiently small ensures
that

log(𝐶2)
𝐶3
+ 𝐶21 log(2

|𝐾|∞
𝑐𝐾,𝐿
) ≤ 𝐶21 log(

1
ℎ𝑑/2
) ,

for any ℎ ≤ ℎ0, which permits to ensure that the previous condition
is satisfied whenever 𝑀2|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑, for some 𝑀2 > 0. Take
𝑀1 = 𝑀1 +𝑀2 to obtain the desired result.

Lemma 2.24. Suppose that Assumptions 2.1 and 2.2 are fulfilled. There exist
constants𝑀1 > 0 and ℎ0 > 0 depending only on 𝑏, 𝐿 and 𝐾 such that:

ℙ( inf
(𝑡,𝑥)∈𝛾𝑏
�̂�𝑛(𝑡, 𝑥) ≥

3
4
𝑏3) ≥ 1 − 𝜀,

provided that ℎ ≤ ℎ0 and𝑀1| log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑.

Proof. Define

𝒜𝑛 = { sup
(𝑡,𝑥)∈𝛾𝑏
|𝐻(𝑡, 𝑥) − �̂�𝑛(𝑡, 𝑥)| ≤ 𝑏3/4} .

By virtue of Assumption 2.1, for any (𝑡, 𝑥) ∈ 𝛾𝑏, we have:

𝐻(𝑡 ∣ 𝑥) = 𝑆𝐶(𝑡 ∣ 𝑥)𝑆𝑌(𝑡 ∣ 𝑥)
≥ 𝑏2,

as a consequence of

�̂�𝑛(𝑡, 𝑥) ≥ 𝐻(𝑡, 𝑥) − |𝐻(𝑡, 𝑥) − �̂�𝑛(𝑡, 𝑥)| ,

𝒜𝑛 ⊂ { inf
(𝑡,𝑥)∈𝛾𝑏
�̂�𝑛(𝑡, 𝑥) ≥

3
4
𝑏3} .

Hence we only have to prove that event𝒜𝑛 occurs with probability 1 − 𝜀
at least. By virtue of Lemma 2.22, as soon as ℎ ≤ √3𝑏3/(8𝐶0), we have

sup
(𝑡,𝑥)∈𝛾𝑏
|𝐻ℎ(𝑡, 𝑥) − 𝐻(𝑡, 𝑥)| ≤

3
8
𝑏3,

and thus

{ sup
(𝑡,𝑥)∈𝛾𝑏
|�̂�𝑛(𝑡, 𝑥) − 𝐻ℎ(𝑡, 𝑥)| ≤

3
8
𝑏3} ⊂ 𝒜𝑛.

Simply use Lemma 2.23 to ensure that the event in the left-hand side holds
with probability 1 − 𝜀 whenever𝑀1| log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑 (where𝑀1 now
depends on 𝑏, 𝐿 and 𝐾) and ℎ ≤ ℎ0.
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Now we conclude the proof. We start by using Lemma 2.24 to get that
inf(𝑡,𝑥)∈𝛾𝑏 �̂�𝑛(𝑡, 𝑥) ≥ 3𝑏

3/4 happens with probability 1 − 𝜀/3. We suppose
that this event is realized in the following. Let (𝑡, 𝑥) ∈ 𝛾𝑏 and define

𝜏𝑥 = inf{𝑡 ≥ 0 ∶ min{𝑆𝐶(𝑡 ∣ 𝑥), 𝑆𝑌(𝑡 ∣ 𝑥)} > 𝑏} .

Observing that the choice of kernel 𝐾 guarantees that ̂𝑆𝐶,𝑛(⋅|𝑥) is a (ran-
dom) survival function, we first apply Lemma 2.19 with 𝑆(1) = ̂𝑆𝐶,𝑛(⋅|𝑥),
𝑆(2) = 𝑆𝐶(⋅|𝑥) and 𝜃 = 𝑏 to get:

‖ ̂𝑆𝐶,𝑛(⋅|𝑥) − 𝑆𝐶(⋅|𝑥)‖[0,𝜏𝑥]
≤ 2
𝑏
‖�̂�𝐶,𝑛(⋅|𝑥) − 𝜆𝐶(⋅|𝑥)‖[0,𝜏𝑥]

. (2.49)

Applying Lemma 2.20 with

Λ(1)(𝑢) = 𝜆𝐶(𝑢 ∣ 𝑥)

= −∫
𝑢

0

𝐻0(d𝑠, 𝑥)
𝐻(𝑠−, 𝑥)

,

Λ(2)(𝑢) = �̂�𝐶,𝑛(𝑢 ∣ 𝑥)

= −∫
𝑢

0

�̂�0,𝑛(d𝑠, 𝑥)
�̂�𝑛(𝑠−, 𝑥)

,

𝛽 = 1,
𝜃1 = 𝑏3 ≤ 𝐻(𝑠, 𝑥),

𝜃2 =
3
4
𝑏3,

because inf(𝑡,𝑥)∈𝛾𝑏 �̂�𝑛(𝑡, 𝑥) ≥ 𝑏
3/4, next yields

‖�̂�𝐶,𝑛(⋅ ∣ 𝑥) − 𝜆𝐶(⋅ ∣ 𝑥)‖[0,𝜏𝑥]

≤ 2
𝑏3
‖�̂�0,𝑛(⋅, 𝑥) − 𝐻0(⋅ ∣ 𝑥)𝑔(𝑥)‖[0,𝜏𝑥]

+ 4
3𝑏6
‖�̂�𝑛(⋅, 𝑥) − 𝐻(⋅ ∣ 𝑥)𝑔(𝑥)‖[0,𝜏𝑥] . (2.50)

Combining eq. (2.49) and eq. (2.50), using Lemma 2.22 and taking the
supremum over 𝑥 such that 𝑔(𝑥) > 𝑏, we obtain that, the following bound
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holds true:

sup
(𝑡,𝑥)∈𝛾𝑏
| ̂𝑆𝐶,𝑛(𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)|

≤ 4
𝑏4

sup
(𝑡,𝑥)∈𝛾𝑏
|�̂�0,𝑛(𝑡, 𝑥) − 𝐻0(𝑡, 𝑥)|

+ 8
3𝑏7

sup
(𝑡,𝑥)∈𝛾𝑏
|�̂�𝑛(𝑡, 𝑥) − 𝐻(𝑡, 𝑥)|

≤ 4
𝑏4

sup
(𝑡,𝑥)∈𝛾𝑏
|�̂�0,𝑛(𝑡, 𝑥) − 𝐻0,ℎ(𝑡, 𝑥)| +

4
𝑏4
𝐶0ℎ2

+ 8
3𝑏7

sup
(𝑡,𝑥)∈𝛾𝑏
|�̂�𝑛(𝑡, 𝑥) − 𝐻ℎ(𝑡, 𝑥)| +

8
3𝑏7
𝐶0ℎ2.

(2.51)

Lemma 2.23 with the probability level 𝜀/3 allows us to bound the 2 pre-
vious random terms. Combined with the union bound (with 3 events
having probability smaller than 𝜀/3), permits claiming that with probabil-
ity greater than 1 − 𝜀:

sup
(𝑡,𝑥)∈𝛾𝑏
| ̂𝑆𝐶,𝑛(𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)|

≤ 4
𝑏4
(1 + 2
3𝑏3
)(𝐶0ℎ2 + √

𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

) ,

provided that (to apply Lemma 2.23) ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥ 𝑀1| log(3𝜀ℎ𝑑/2)|.
Examining the different terms and taking ℎ0 small enough lead to the
stated result.

2.8.4 Proof of Proposition 2.7
Proof of (i): Observe that: ∀𝑖 ∈ {1,…, 𝑛},

sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)0,𝑛(𝑡, 𝑥) − �̂�0,𝑛(𝑡, 𝑥)| ≤ 2

‖𝐾‖∞
(𝑛 − 1)ℎ𝑑

, (2.52)

sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)𝑛 (𝑡, 𝑥) − �̂�𝑛(𝑡, 𝑥)| ≤ 2

‖𝐾‖∞
(𝑛 − 1)ℎ𝑑

. (2.53)

The result follows from the union bound and that each of these events

ℬ(1)𝑛 ≝ ⋂
𝑖≤𝑛
{∀(𝑡, 𝑥) ∈ 𝕂, �̂�(𝑖)𝑛 (𝑡, 𝑥) ≥

𝑏3

2
} ,

ℬ(2)𝑛 ≝ ⋂
𝑖≤𝑛
{∀(𝑡, 𝑥) ∈ 𝕂, 𝑆(𝑖)𝐶,𝑛(𝑡, 𝑥) ≥

𝑏
2
} ,
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has probability 1 − 𝜀/2 under the mentioned condition on (𝑛, ℎ). Apply
Lemma 2.24 to choose (𝑛, ℎ) such that with probability 1 − 𝜀/2,

inf
(𝑡,𝑥)∈𝕂
�̂�𝑛(𝑡, 𝑥) ≥

3
4
𝑏3.

Using eq. (2.53) and the triangle inequality, we get thatℬ(1)𝑛 has probability
1 − 𝜀/2 provided that

2
‖𝐾‖∞
(𝑛 − 1)ℎ𝑑

≤ 𝑏
3

4
.

Suppose that eventℬ(1)𝑛 is realized. The same reasoning as that used in the
proof of Theorem 2.6 (see eqs. (2.49) to (2.51)), with

𝑆(1)(⋅) = 𝑆𝐶(⋅|𝑥),

𝑆(2)(⋅) = 𝑆(𝑖)𝐶,𝑛(⋅|𝑥),
𝛽 = 1,
𝜃1 = 𝑏3,
𝜃2 = 𝑏3/2,

(as ℬ(1)𝑛 is realized), combined with the triangular inequality, yields: ∀𝑖 ∈
{1,…, 𝑛},

sup
(𝑡,𝑥)∈𝕂
| ̂𝑆(𝑖)𝐶,𝑛(𝑡|𝑥) − 𝑆𝐶(𝑡|𝑥)|

≤ 4
𝑏4
( sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)0,𝑛(𝑡, 𝑥) − �̂�0,𝑛(𝑡, 𝑥)| + sup

(𝑡,𝑥)∈𝕂
|�̂�0,𝑛(𝑡, 𝑥) − 𝐻0(𝑡, 𝑥)|)

+ 4
𝑏7
( sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)𝑛 (𝑡, 𝑥) − �̂�𝑛(𝑡, 𝑥)| + sup

(𝑡,𝑥)∈𝕂
|�̂�𝑛(𝑡, 𝑥) − 𝐻(𝑡, 𝑥)|) .

We further assume that

2 ( 4
𝑏4
+ 4
𝑏7
)
‖𝐾‖∞
(𝑛 − 1)ℎ𝑑

≤ 𝑏
4
,

which is realized whenever ℎ0 is small enough and𝑀1, appearing in the
condition 𝑛ℎ𝑑 ≥ 𝑀1| log(ℎ𝑑/2𝜀)|, is large enough. From 𝕂 ⊂ 𝛾𝑏 and
eq. (2.52)-eq. (2.53), it results that

{ sup
(𝑡,𝑥)∈𝕂
|�̂�0,𝑛(𝑡, 𝑥) − 𝐻0(𝑡, 𝑥)| ≤

𝑏5

32
}⋂{ sup

(𝑡,𝑥)∈𝕂
|�̂�𝑛(𝑡, 𝑥) − 𝐻(𝑡, 𝑥)| ≤

𝑏8

32
} ,

is included in the set ℬ(2)𝑛 . Following the treatment of eq. (2.51), it is easy
to see that the latter event occurs with probability 1− 𝜀/2 whenever ℎ ≥ ℎ0
is small enough (for the bias) and 𝑛ℎ𝑑 ≥ 𝑀1| log(ℎ𝑑/2𝜀)|.
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Proof of (ii). We suppose that the event ℰ𝑛 is realized. For all 𝑖 ∈ {1,…, 𝑛},
recall that

Λ̂(𝑖)𝐶,𝑛(d𝑢 ∣ 𝑥) = −
�̂�(𝑖)0,𝑛(d𝑢, 𝑥)
�̂�(𝑖)𝑛 (𝑢−, 𝑥)

,

Δ̂(𝑖)𝑛 = Λ̂
(𝑖)
𝐶,𝑛 − Λ𝐶,

and that 𝑐(𝑠 ∣ 𝑥) = 𝑆𝐶(𝑠− ∣ 𝑥)/𝑆𝐶(𝑠 ∣ 𝑥). It results from Theorem 3.2.3 in
Fleming and Harrington (1991), page 97 that

̂𝑆(𝑖)𝐶,𝑛(𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)
𝑆𝐶(𝑡 ∣ 𝑥)

=

− ∫
𝑡

0
𝑐(𝑢 ∣ 𝑥)Δ̂(𝑖)𝑛 (d𝑢|𝑥) − ∫

𝑡

0

̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢|𝑥).

The Taylor expansion of eq. (2.47) gives that

Δ̂(𝑖)𝑛 (d𝑢 ∣ 𝑥) =
�̂�(𝑖)0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥)

𝐻(𝑢, 𝑥)

−
(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥)) �̂�

(𝑖)
0,𝑛(d𝑢, 𝑥)

𝐻(𝑢, 𝑥)2

+
(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥))

2 �̂�(𝑖)0,𝑛(d𝑢, 𝑥)

𝐻(𝑢, 𝑥)2�̂�(𝑖)𝑛 (𝑢, 𝑥)
,

which implies that

̂𝑆(𝑖)𝐶,𝑛(𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)
𝑆𝐶(𝑡 ∣ 𝑥)

= ̂𝑎(𝑖)𝑛 (𝑡 ∣ 𝑥) + �̂�(𝑖)𝑛 (𝑡 ∣ 𝑥), (2.54)

where

̂𝑎(𝑖)𝑛 (𝑡 ∣ 𝑥) = − ∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)

(�̂�(𝑖)0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥))

+ ∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)2

(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥)) �̂�
(𝑖)
0,𝑛(d𝑢, 𝑥),

�̂�(𝑖)𝑛 (𝑡 ∣ 𝑥) = − ∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)2�̂�(𝑖)𝑛 (𝑢, 𝑥)

(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥))
2 �̂�(𝑖)0,𝑛(d𝑢, 𝑥)

− ∫
𝑡

0

̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢 ∣ 𝑥).
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Now, using eq. (2.47), we obtain that: ∀𝜑 ∈ Φ,

𝑍𝑛(𝜑) =
1
𝑛

𝑛

∑
𝑖=1
(𝛿𝑖
𝜑(𝑇𝑖, 𝑋𝑖)
̂𝑆(𝑖)𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖)

− 𝔼[𝛿 𝜑(𝑇,𝑋)
𝑆𝐶(𝑇 ∣ 𝑋)

])

= 1
𝑛

𝑛

∑
𝑖=1
(𝛿𝑖
𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

− 𝔼[𝛿 𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇 ∣ 𝑋)

])

− 1
𝑛

𝑛

∑
𝑖=1
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)

̂𝑆(𝑖)𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖) − 𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)
𝑆2𝐶(𝑇𝑖 ∣ 𝑋𝑖)

+ 1
𝑛

𝑛

∑
𝑖=1
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)

(𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) − ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖))

2

𝑆2𝐶(𝑇𝑖 ∣ 𝑋𝑖) ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖)

.

Then, using eq. (2.54), we retrieve the expected terms

𝑍𝑛(𝜑) = 𝐿𝑛(𝜑) +𝑀𝑛(𝜑) + 𝑅𝑛(𝜑),

which proves (𝑖𝑖).

2.8.5 Proof of Proposition 2.8
The proof is based on the decomposition stated in Proposition 2.7, com-
bined with the lemmas below that permit to control each term involved in
it. Their proofs are given in the next section of the Appendix.

The term 𝐿𝑛(𝜑) is a basic i.i.d. centered average. As shown in the lemma
stated below, its uniform fluctuations can be controlled by standard results
in empirical process theory.

Lemma 2.25. Suppose that the hypotheses of Proposition 2.8 are fulfilled.
Then, for any 𝜀 ∈]0, 1[, we have with probability at least 1 − 𝜀:

sup
𝜑∈Φ
|𝐿𝑛(𝜑)| ≤ √

𝑀1 log(𝑀2/𝜀)
𝑛

,

provided that 𝑛 ≥ 𝑀1 log(𝑀2/𝜀), where𝑀1 > 0 and𝑀2 > 1 are constants
depending on (𝐴, 𝑣), 𝐾,𝑀Φ, and 𝑏 only.

We now turn to the term𝑀𝑛(𝜑). Observe it can be decomposed as

𝑀𝑛(𝜑) = 𝑉𝑛,1(𝜑) + 𝐵𝑛,1(𝜑) + 𝑉𝑛,2(𝜑) + 𝐵𝑛,2(𝜑),
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where

𝑉𝑛,1(𝜑) =
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

∫
𝑇𝑖

0

𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)2

(�̂�(𝑖)𝑛 (𝑢, 𝑋𝑖) − 𝐻ℎ(𝑢, 𝑋𝑖)) �̂�
(𝑖)
0,𝑛(d𝑢,𝑋𝑖),

𝐵𝑛,1(𝜑) =
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

∫
𝑇𝑖

0

𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)2

(𝐻ℎ(𝑢, 𝑋𝑖) − 𝐻(𝑢,𝑋𝑖)) �̂�
(𝑖)
0,𝑛(d𝑢,𝑋𝑖),

𝑉𝑛,2(𝜑) = −
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

∫
𝑇𝑖

0

𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)

(�̂�(𝑖)0,𝑛(d𝑢,𝑋𝑖) − 𝐻0,ℎ(d𝑢,𝑋𝑖)) ,

𝐵𝑛,2(𝜑) = −
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

∫
𝑇𝑖

0

𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)

(𝐻0,ℎ(d𝑢,𝑋𝑖) − 𝐻0(d𝑢,𝑋𝑖)) .

Next we treat the bias terms 𝐵𝑛,1 and 𝐵𝑛,2.

Lemma 2.26. Under the assumptions of Proposition 2.8, for any 𝜀 ∈]0, 1[,
we have, with probability 1 − 𝜀:

sup
𝜑∈Φ
|𝐵𝑛,1(𝜑)| ≤ 𝑀1ℎ2,

sup
𝜑∈Φ
|𝐵𝑛,2(𝜑)| ≤ 𝑀1ℎ2,

provided that 𝑛 ≥ 𝑀2| log(ℎ𝑑/2𝜀)|, where𝑀1 > 0,𝑀2 > 0 depend only
on𝑀Φ, 𝐾, 𝐿 and 𝑏.

Now we consider 𝑉𝑛,1(𝜑). For simplicity, we set 𝐾𝑖𝑗 = 𝐾ℎ(𝑋𝑖 − 𝑋𝑗) for
1 ≤ 𝑖, 𝑗 ≤ 𝑛. We have:

𝑉𝑛,1(𝜑) =
1
𝑛(𝑛 − 1)

∑
(𝑖,𝑗)
𝑖≠𝑗

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

× 𝟙𝑇𝑗≤𝑇𝑖
(1 − 𝛿𝑗)𝐾𝑖𝑗𝑐(𝑇𝑗 ∣ 𝑋𝑖)
𝐻(𝑇𝑗, 𝑋𝑖)2

(�̂�(𝑖)𝑛 (𝑇𝑗, 𝑋𝑖) − 𝐻ℎ(𝑇𝑗, 𝑋𝑖))

= 1
𝑛(𝑛 − 1)2

∑
(𝑖,𝑗,𝑘)
𝑖≠𝑗,𝑖≠𝑘

𝑣𝑖,𝑗,𝑘(𝜑)

= 𝑉′𝑛,1(𝜑) + 𝑉″𝑛,1(𝜑),

where, for all 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛,

𝑣𝑖,𝑗,𝑘(𝜑) =

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

𝟙𝑇𝑗≤𝑇𝑖
(1 − 𝛿𝑗)𝐾𝑖𝑗𝑐(𝑇𝑗 ∣ 𝑋𝑖)
𝐻(𝑇𝑗, 𝑋𝑖)2

(𝟙𝑇𝑘>𝑇𝑗𝐾𝑖𝑘 − 𝐻ℎ(𝑇𝑗, 𝑋𝑖)) ,
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and

𝑉′𝑛,1(𝜑) =
1
𝑛(𝑛 − 1)2

∑
(𝑖,𝑗,𝑘)
𝑖≠𝑗,𝑖≠𝑘,𝑗≠𝑘

𝑣𝑖,𝑗,𝑘(𝜑),

𝑉″𝑛,1(𝜑) =
1
𝑛(𝑛 − 1)2

∑
(𝑖,𝑗)
𝑖≠𝑗

𝑣𝑖,𝑗,𝑗(𝜑).

The lemma stated below provides a uniform bound for 𝑉″𝑛,1(𝜑).

Lemma 2.27. Under the assumptions of Proposition 2.8, we have, with
probability 1:

sup
𝜑∈Φ
|𝑉″𝑛,1(𝜑)| ≤

𝑀1
𝑛ℎ𝑑
,

where𝑀1 > 0 depends only on𝑀Φ, 𝐾, 𝐿 and 𝑏.

We now consider 𝑉′𝑛,1(𝜑). Set 𝑍𝑘 = (𝑋𝑘, 𝑇𝑘, 𝛿𝑘) for 𝑘 ∈ {1,…, 𝑛}. It can
be decomposed as follows:

𝑉′𝑛,1(𝜑) =
𝑛 − 2
𝑛 − 1
(𝑈(1)𝑛,1 (𝜑) + 𝑈

(2)
𝑛,1 (𝜑) + 𝑈

(3)
𝑛,1 (𝜑) + 𝐿′𝑛(𝜑)) ,

with

𝑈(1)𝑛,1 (𝜑) =
1

𝑛(𝑛 − 1)(𝑛 − 2)
∑
(𝑖,𝑗,𝑘)
𝑖≠𝑗,𝑖≠𝑘,𝑗≠𝑘

(𝑣𝑖,𝑗,𝑘(𝜑) − 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑗, 𝑍𝑘] −

𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑖, 𝑍𝑘] + 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑘]),

𝑈(2)𝑛,1 (𝜑) =
1
𝑛(𝑛 − 1)

∑
(𝑗,𝑘)
𝑗≠𝑘

(𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑗, 𝑍𝑘] − 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑘]) ,

𝑈(3)𝑛,1 (𝜑) =
1
𝑛(𝑛 − 1)

∑
(𝑖,𝑘)
𝑖≠𝑘

(𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑖, 𝑍𝑘] − 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑘]) ,

𝐿′𝑛(𝜑) =
1
𝑛
∑
𝑘
𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑘] ,

where 𝑖, 𝑗 and 𝑘 always denote pairwise distinct indexes, with the varying
amount of indexes in the summations being the result of the successive
marginalizations necessary to obtain degenerate 𝑈-processes. Observe
that, for all 𝜑 ∈ Φ and pairwise distinct indexes 𝑖, 𝑗 and 𝑘 in {1,…, 𝑛}, we
have with probability one:

𝔼[𝑣𝑖,𝑗,𝑘(𝜑) ∣ 𝑍𝑖, 𝑍𝑗] = 𝔼[𝑣𝑖,𝑗,𝑘(𝜑) ∣ 𝑍𝑖] = 𝔼[𝑣𝑖,𝑗,𝑘(𝜑) ∣ 𝑍𝑗] = 0.
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The quantities 𝑈(𝑘)𝑛,1 (𝜑), 𝑘 ∈ {1, 2, 3} are thus degenerate 𝑈-statistics of de-
gree 3, 2 and 2 respectively, whereas 𝐿′𝑛(𝜑) is a basic (centred) i.i.d. average.
The following result is essentially proved by applying Corollary 2.12, once
the complexity assumptions related to the classes of kernels involved in
the definition of these degenerate 𝑈-processes have been established. It
shows that the terms 𝑈(𝑘)𝑛,1 (𝜑)’s are uniformly negligible.

Lemma 2.28. Suppose that the hypotheses of Proposition 2.8 are fulfilled.
There exist constants𝑀1,𝑀2 and ℎ0 depending on (𝐴, 𝑣),𝑀Φ, 𝐿, 𝐾 and 𝑏
only, such that for any 𝜀 ∈ (0, 1), each of the following events holds true with
probability at least 1 − 𝜀:

sup
𝜑∈Φ
|𝑈(1)𝑛,1 (𝜑)| ≤ (

𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

)
3/2

, (2.55)

sup
𝜑∈Φ
|𝑈(2)𝑛,1 (𝜑)| ≤

𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

, (2.56)

sup
𝜑∈Φ
|𝑈(3)𝑛,1 (𝜑)| ≤

𝑀1 |log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

, (2.57)

as soon as ℎ ≤ ℎ0 and𝑀2 |log(𝜀ℎ𝑑)| ≤ 𝑛ℎ2𝑑.

Maximal deviation inequalities for the 𝐿′𝑛(𝜑) can be obtained by means
of classical results in empirical process theory, like for 𝐿𝑛(𝜑).

Lemma 2.29. Suppose that the hypotheses of Proposition 2.8 are fulfilled.
Then, for any 𝜀 ∈]0, 1[, we have with probability at least 1 − 𝜀:

sup
𝜑∈Φ
|𝐿′𝑛(𝜑)| ≤ √

𝑀1 log(𝑀2/𝜀)
𝑛

,

as soon as𝑀2 |log(𝜀ℎ𝑑)| ≤ 𝑛ℎ2𝑑 and ℎ ≤ ℎ0 where ℎ0,𝑀1 > 0 and𝑀2 > 1
are constants depending on (𝐴, 𝑣), 𝐾,𝑀Φ, 𝐿 and 𝑏 only.

The two preceding lemmas combined with the union bound directly
yield the following result.

Corollary 2.30. Suppose that the hypotheses of Proposition 2.8 are fulfilled.
There exist constants𝑀1,𝑀2,𝑀3 and ℎ0 depending on (𝐴, 𝑣),𝑀Φ, 𝐿, 𝐾
and 𝑏 only such that for any 𝜀 ∈]0, 1[, we have with probability greater
than 1 − 𝜀:

sup
𝜑∈Φ
|𝑉′𝑛,1(𝜑)| ≤ 𝑀1(√

log(𝑀2/𝜀)
𝑛
+
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ (
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑
)
3/2

) ,

as soon as ℎ ≤ ℎ0,𝑀3|log(𝜀ℎ𝑑)| ≤ 𝑛ℎ2𝑑.
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We next deal with the term 𝑉𝑛,2(𝜑).

Lemma 2.31. Suppose that the hypotheses of Proposition 2.8 are fulfilled.
There exist constants𝑀1,𝑀2,𝑀3 and ℎ0 depending on (𝐴, 𝑣),𝑀Φ, 𝐿, 𝐾
and 𝑏 only such that for any 𝜀 ∈]0, 1[, we have with probability greater
than 1 − 𝜀:

sup
𝜑∈Φ
|𝑉𝑛,2(𝜑)| ≤ 𝑀1 (√

log(𝑀2/𝜀)
𝑛
+
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑/2

) ,

as soon as ℎ ≤ ℎ0,𝑀3|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑.

Finally, we consider the residual 𝑅𝑛(𝜑). Recall first that, for all 𝜑 ∈ Φ,
we have 𝑅𝑛(𝜑) = 𝑅′𝑛(𝜑) + 𝑅″𝑛 (𝜑), where

𝑅′𝑛(𝜑) = −
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

�̂�(𝑖)𝑛 (𝑇𝑖 ∣ 𝑋𝑖), (2.58)

𝑅″𝑛 (𝜑) =
1
𝑛

𝑛

∑
𝑖=1
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)

(𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) − ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖))

2

𝑆2𝐶(𝑇𝑖 ∣ 𝑋𝑖) ̂𝑆
(𝑖)
𝐶,𝑛(𝑇𝑖 ∣ 𝑋𝑖)

. (2.59)

Each of the quantities, 𝑅′𝑛(𝜑) and 𝑅″𝑛 (𝜑), is treated separately. We start
with 𝑅″𝑛 (𝜑).

Lemma 2.32. Suppose that the assumptions of Proposition 2.8 are satisfied.
Then, for all 𝜀 ∈]0, 1[, we have with probability greater than 1 − 𝜀

sup
𝜑∈Φ
|𝑅″𝑛 (𝜑)| ≤ 𝑀1 (

|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ 1
(𝑛ℎ𝑑)2
+ ℎ4) ,

as soon as ℎ ≤ ℎ0 and 𝑀2|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑, where 𝑀1 and 𝑀2 are
nonnegative constants depending on 𝐾, 𝐿,𝑀Φ and 𝑏 only.

We now state a uniform bound for 𝑅′𝑛(𝜑).

Lemma 2.33. Suppose that the assumptions of Proposition 2.8 are satisfied.
Then, for all 𝜀 ∈]0, 1[, we have with probability greater than 1 − 𝜀

sup
𝜑∈Φ
|𝑅′𝑛(𝜑)| ≤ 𝑀1(

|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+
√|log(𝜀ℎ𝑑/2)|

(𝑛ℎ𝑑)3/2
+ 1
𝑛ℎ𝑑
+ 1
(𝑛ℎ𝑑)2
+ ℎ2) ,

as soon as ℎ ≤ ℎ0 and 𝑀2|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑, where 𝑀1 and 𝑀2 are
nonnegative constants depending on 𝐾, 𝐿,𝑀Φ and 𝑏 only.
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Now we can conclude the proof of Proposition 2.8 by gathering each of
the previous results. First note that they all are valid under the condition
that

ℎ ≤ ℎ0,

𝑀1 |log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑,

𝑛 ≥ 𝑀2 log(
𝑀3
𝜀
) .

By taking ℎ0 small enough, the last requirement is no longer necessary. In
addition, if

𝑛ℎ𝑑 > 1,

|log(𝜀ℎ𝑑/2)| > 1,

we guarantee that

|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

≥ 1
𝑛ℎ𝑑
≥ 1
(𝑛ℎ𝑑)2
,

|log(𝜀ℎ𝑑/2)|1/2 ≤ |log(𝜀ℎ𝑑/2)|3/2 ,

leading to

√|log(𝜀ℎ𝑑/2)|

(𝑛ℎ𝑑)3/2
≤ (
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑
)
3/2

≤
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑
.

Using this manipulation, we obtain the stated result.

2.8.6 Intermediary Results
Here we prove lemmas involved in the argument of the proof of Proposi-
tion 2.8. Recall that, under the assumptions stipulated: ∀(𝑡, 𝑥) ∈ 𝕂,

𝐻(𝑡, 𝑥) ≥ 𝑏3,
𝑆𝐶(𝑡 ∣ 𝑥) ≥ 𝑏,
𝑐(𝑡 ∣ 𝑥) ≤ 𝑏−1,
𝐻ℎ(𝑡 ∣ 𝑥) ≤ 𝐿.

(2.60)

Proof of Lemma 2.25 The proof is a direct application of Corollary 2.12
to the i.i.d. sequence {(𝑋𝑛, 𝑇𝑛, 𝛿𝑛) ∶ 𝑛 ≥ 1} and the class of functions

(𝑥, 𝑢, 𝛿) ∈ 𝕂 × {0, 1} ↦ 𝛿𝜑(𝑢, 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

,
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indexed by (𝜑, ℎ) ∈ Φ×]0, ℎ0]. The previous class is of vc type in virtue
of Lemma 2.16. We choose 𝜎 = ‖𝐺‖∞ = 2𝑀Φ/𝑏, the bound obtained for
𝐿𝑛(𝜑) is simply

2𝑀Φ
𝑏𝑛1/2
((𝐶21 log(2))

1/2 + ( log(𝐶2/𝜀)
𝐶3
)
1/2
)

≤ 2
√2𝑀Φ
𝑏𝑛1/2
(𝐶21 log(2) +

log(𝐶2/𝜀)
𝐶3
)
1/2
,

where the constants 𝐶1, 𝐶2, 𝐶3 are the ones of Corollary 2.12. Easy manip-
ulations give the result.

Proof of Lemma 2.26 Taking the supremum of each element in the sum
we find that

|𝐵𝑛,1(𝜑)| ≤
𝑀Φ
𝑏8

sup
(𝑢,𝑥)∈𝒦
|𝐻ℎ(𝑢, 𝑥) − 𝐻(𝑢, 𝑥)| sup

(𝑢,𝑥)∈𝒦
|�̂�(𝑖)0,𝑛(𝑢, 𝑥)|.

An appeal to Lemma 2.22, Lemma 2.23 combined with eq. (2.52) gives the
first result. Concering 𝐵𝑛,2, we write

|𝐵𝑛,2(𝜑)| ≤
𝑀Φ
𝑏

sup
(𝑡,𝑥)∈𝒦
|∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)

(𝐻0,ℎ(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥))| .

Because for any signed measure 𝜈 on ℝ+ and any measurable function
𝑓 with total variation at most 1 vanishing at infinity, we have (Dudley
[1992]),

|∫𝑓(𝑢)𝜈(d𝑢)| ≤ sup
𝑡∈ℝ
|∫
𝑡

0
𝜈(d𝑢)| , (2.61)

we conclude that

|𝐵𝑛,2(𝜑)| ≤ 𝑀 sup
(𝑢,𝑥)∈𝒦
|𝐻0,ℎ(𝑢, 𝑥) − 𝐻0(𝑢, 𝑥)|.

where𝑀 > 0 depends only on 𝐿, 𝑏 and𝑀Φ. Conclude by using the bound
given in Lemma 2.22.

Proof of Lemma 2.27 Observe that, for 𝑖 ≠ 𝑗, we have

𝑣𝑖,𝑗,𝑗(𝜑) = −
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

𝟙𝑇𝑗≤𝑇𝑖
(1 − 𝛿𝑗)𝐾𝑖𝑗𝑐(𝑇𝑗 ∣ 𝑋𝑖)
𝐻(𝑇𝑗, 𝑋𝑖)2

𝐻ℎ(𝑇𝑗, 𝑋𝑖).

It follows from eq. (2.60) that

|𝑣𝑖,𝑗,𝑗(𝜑)| ≤
𝑀Φ
𝑏8
‖𝐾‖∞ ℎ

−𝑑𝐿,

and since 𝑉″𝑛,1(𝜑) is a sum over 𝑛(𝑛 − 1) such terms divided by 𝑛(𝑛 − 1)2
we get the stated bound.
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Proof of Lemma 2.28 We will use the expression

𝑣𝑖,𝑗,𝑘(𝜑) = 𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 − 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑍𝑖, 𝑍𝑗] ,

with

𝑤𝑖,𝑗,𝑘(𝜑) =
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

𝟙𝑇𝑗≤�̃�𝑖
(1 − 𝛿𝑗)𝑐(𝑇𝑗 ∣ 𝑋𝑖)
𝐻(𝑇𝑗, 𝑋𝑖)2

𝟙𝑇𝑘>𝑇𝑗 .

Using eq. (2.60), we have that

|𝑤𝑖,𝑗,𝑘| ≤
𝑀Φ
𝑏8
. (2.62)

Recall that with probability 1,

𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑖, 𝑍𝑗] = 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑖] = 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑗] = 0.

As a result, the quantities 𝑈(𝑘)𝑛,1 (𝜑), 𝑘 ∈ {1, 2, 3} are degenerate 𝑈-statistics
of degree 3, 2 and 2 respectively. For this reasonwe can apply Corollary 2.12
to each of them as soon as their respective kernels are shown to form vc
classes. The kernel of ℎ2𝑑𝑛(𝑛 − 1)2𝑈(1)𝑛,1 is

ℎ2𝑑(𝑣𝑖,𝑗,𝑘(𝜑) − 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑗, 𝑍𝑘]

− 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑖, 𝑍𝑘] + 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑘]).

Lemma 2.14 and Corollary 17 in Nolan and D. Pollard (1987) implies that it
is of vc type with constant envelope 8𝑈 as soon as {𝑣𝑖,𝑗,𝑘(𝜑)} is of vc type
with envelope 𝐶 defined as

𝑈 = 𝑀Φ
𝑏8
‖𝐾‖2∞.

The later is true in virtue of Lemmas 2.13 and 2.16. The same arguments
implies that the kernels of ℎ2𝑑𝑛(𝑛 − 1)𝑈(2)𝑛,1 (𝜑) and ℎ2𝑑𝑛(𝑛 − 1)𝑈

(3)
𝑛,1 (𝜑) are

of vc type with the constant envelope 4𝐶. In what follows we specify, for
each 𝑈(𝑘)𝑛,1 (𝜑), the value of 𝜎 to use in the application of Corollary 2.12.

The bound for𝑈(1)𝑛,1 (𝜑). Observe that

𝔼[(ℎ2𝑑𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗)
2] ≤ (𝑀Φ
𝑏8
)
2
𝔼[𝐾(𝑋1 − 𝑋2

ℎ
)
2
𝐾(𝑋1 − 𝑋3
ℎ
)
2
]

≤ (𝑀Φ
𝑏8
)
2
𝐿2𝑐4𝐾ℎ2𝑑,
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where 𝑐2𝐾 = ∫𝐾2(𝑥) d𝑥. Since we have a sum of 8 terms in the𝑈-statistics
of interest, ℎ2𝑑𝑛(𝑛 − 1)2𝑈(1)𝑛,1 (𝜑), each having an 𝐿2-norm smaller that
𝔼[ℎ4𝑑𝑣𝑖,𝑗,𝑘(𝜑)2] (by Jensen’s inequality), we obtain a bound for the result-
ing variance (using Minkowski’s inequality), of

𝕍[ℎ2𝑑𝑛(𝑛 − 1)2𝑈(1)𝑛,1 (𝜑)] ≤ 82 (
𝑀Φ
𝑏8
)
2
𝐿2𝑐4𝐾ℎ2𝑑.

We apply Corollary 2.12 with 𝑘 = 3 and a value for 𝜎2 larger or equal than
the previous bound. Note that ℎ ≤ ℎ0 and take

𝜎2 = 82 (𝑀Φ
𝑏8
)
2
𝐿2𝑐4𝐾ℎ2𝑑,

‖𝐺‖∞ = 8𝑀Φ
‖𝐾‖2∞
𝑏8
.

Then, the conditions are

‖𝐾‖4∞
𝐿2𝑐4𝐾ℎ𝑑0
(𝐶2/31 log( 2‖𝐾‖

2
∞

ℎ𝑑/2ℎ𝑑/20 𝐿𝑐2𝐾
) + log(𝐶2/𝜀)

𝐶3
) ≤ 𝑛ℎ𝑑,

𝐿2𝑐4𝐾ℎ𝑑ℎ𝑑0 ≤ ‖𝐾‖4∞,

where 𝐶1, 𝐶2 and 𝐶3 are the constants in Corollary 2.12. The latter condi-
tions are indeed of the type ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥ 𝑀2| log(𝜀ℎ𝑑/2)| which in as
a result, gives

sup
𝜑∈Φ
|ℎ2𝑑𝑛(𝑛 − 1)2𝑈(1)𝑛,1 (𝜑)|

≤ 𝑀1ℎ𝑑/2𝑛3/2 (𝐶1 (log(
𝑀2
ℎ𝑑/2
))
3/2

+ ( log(𝐶2/𝜀)
𝐶3
)
3/2
) ,

where𝑀1 and𝑀2 are constants depending on𝑀Φ, 𝐿, 𝐾, 𝑏, and ℎ0. To
recover the stated result, one just needs to divide the previous bound by
𝑛(𝑛 − 1)(𝑛 − 2)ℎ2𝑑 and to use similar manipulations as the ones presented
at the end of the proof of Lemma 2.23.

The bound for𝑈(2)𝑛,1 (𝜑). In what follows, we use the shortcut

𝔼[⋅ ∣ 𝑍𝑖, 𝑍𝑗] = 𝔼[⋅ ∣ 𝑖, 𝑗].

The kernel of ℎ2𝑑𝑛(𝑛 − 1)𝑈(2)𝑛,1 (𝜑) is given by

ℎ2𝑑 (𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑗, 𝑘] − 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑘])

= ℎ2𝑑(𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑗, 𝑘] − 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑗]

− 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑘] + 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗]).
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By Jensen’s inequality and Minkowski’s inequality, the variance is then
smaller than

42ℎ4𝑑𝔼[𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑗, 𝑘]
2] ≤ 42ℎ4𝑑 (𝑀Φ

𝑏8
)
2
𝔼 [𝐾𝑖𝑗𝐾𝑖𝑘 | 𝑗, 𝑘]

2 .

But we have

𝔼 [𝐾𝑖𝑗𝐾𝑖𝑘 ∣ 𝑗, 𝑘] = ∫𝐾ℎ(𝑥 − 𝑋𝑗)𝐾ℎ(𝑥 − 𝑋𝑘)𝑔(𝑥) d𝑥

≤ 𝐿∫𝐾(𝑢)𝐾ℎ(𝑋𝑗 − 𝑋𝑘 + ℎ𝑢) d𝑢

≤ 𝐿𝐾∗ℎ (𝑋𝑘 − 𝑋𝑗),

where

𝐾∗ = 𝐾 ∗ 𝐾,

𝐾∗ℎ (𝑢) =
𝐾∗ (𝑢/ℎ)
ℎ𝑑
.

Note that ∫𝐾∗(𝑢) d𝑢 = 1 and ‖𝐾∗‖∞ ≤ ‖𝐾‖∞. This previous equalities
implie that

42ℎ4𝑑𝔼[𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 ∣ 𝑗, 𝑘]
2] ≤ 42ℎ4𝑑 (𝑀Φ𝐿

𝑏8
)
2
𝔼 [𝐾∗2𝑗𝑘 ]

≤ 42ℎ3𝑑 (𝑀Φ𝐿
𝑏8
)
2
𝐿𝑐2𝐾∗ ,

where 𝑐2𝐾 = ∫𝐾2(𝑥) d𝑥. The bound eq. (2.56) is thus obtained by applying
Corollary 2.12 to ℎ2𝑑𝑛(𝑛 − 1)𝑈(2)𝑛,1 (𝜑) with 𝑘 = 2 and

𝜎2 = 42ℎ2𝑑ℎ𝑑0 (
𝑀Φ𝐿
𝑏8
)
2
𝐿𝑐2𝐾∗

‖𝐺‖∞ = 4
𝑀Φ
𝑏8
‖𝐾‖∞.

The bound for 𝑈(3)𝑛,1 (𝜑). Similar to the treatment of 𝑈(2)𝑛,1 (𝜑), we apply
Corollary 2.12 to ℎ2𝑑𝑛(𝑛 − 1)𝑈(3)𝑛,1 (𝜑) with 𝑘 = 2. The kernel of ℎ2𝑑𝑛(𝑛 −
1)𝑈(3)𝑛,1 (𝜑) is given by

ℎ2𝑑 (𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑖, 𝑘] − 𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑘])

= ℎ2𝑑(𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑖, 𝑘] − 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑖]

− 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 | 𝑘] + 𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗]).
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We then have the uniform bound

‖𝐺‖∞ = 4
𝑀Φ
𝑏8
𝐿‖𝐾‖∞,

and variance bound

42ℎ4𝑑𝔼[𝔼 [𝑤𝑖,𝑗,𝑘(𝜑) | 𝑖, 𝑘]
2] ≤ 42ℎ4𝑑 (𝑀Φ𝐿

𝑏8
)
2
𝔼 [𝐾2𝑖𝑘]

≤ 42ℎ3𝑑 (𝑀Φ𝐿
𝑏8
)
2
𝐿𝑐2𝐾.

Proof of Lemma 2.29 Based on conditioning arguments, we have

𝔼 [𝑣𝑖,𝑗,𝑘(𝜑) | 𝑍𝑘] = 𝐴𝑘(𝜑) − 𝔼 [𝐴𝑘(𝜑)] ,

where 𝐴𝑘(𝜑) = 𝔼[𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 ∣ 𝑘]. We now show that the class of
functions

{𝑍𝑘 ↦ ℎ𝑑𝐴𝑘(𝜑) ∶ 𝜑 ∈ Φ} ,

is a vc class with constant envelope. We first define

𝛽1 (𝑍𝑖, 𝑍𝑘) = 𝐾𝑖𝑘
𝛿𝑖𝜑 (𝑇𝑖, 𝑋𝑖)
𝑆𝐶 (𝑇𝑖 ∣ 𝑋𝑖)

,

𝛽2 (𝑍𝑖, 𝑍𝑘) = ∫𝑀(𝑋𝑖 + ℎ𝑢, 𝑍𝑖, 𝑍𝑘) 𝐾(𝑢) d𝑢,

𝑀(𝑋𝑗, 𝑍𝑖, 𝑍𝑘) = ∫
𝟙𝑢≤�̃�𝑖,𝑢<𝑇𝑘𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)2

𝐻0(d𝑢 ∣ 𝑋𝑗),

and observe that

𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 ∣ 𝑖, 𝑘]

= 𝛽1(𝑍𝑖, 𝑍𝑘)𝔼 [
𝟙𝑇𝑗≤�̃�𝑖 (1 − 𝛿𝑗)𝑐(𝑇𝑗 ∣ 𝑋𝑖)

𝐻(𝑇𝑗, 𝑋𝑖)2
𝟙𝑇𝑘>𝑇𝑗𝐾𝑖𝑗 | 𝑖, 𝑘]

= 𝛽1(𝑍𝑖, 𝑍𝑘)𝔼 [𝑀(𝑋𝑗, 𝑍𝑖, 𝑍𝑘)𝐾𝑖𝑗 | 𝑖, 𝑘]

= 𝛽1(𝑍𝑖, 𝑍𝑘) ∫𝑀(𝑋𝑖 + ℎ𝑢, 𝑍𝑖, 𝑍𝑘)𝑔(𝑋𝑖 + ℎ𝑢)𝐾(𝑢) d𝑢,

where we have used Assumption 2.1 and the fact that𝐻0(d𝑢|𝑥) = 𝑆𝑌(𝑢 −
|𝑥)𝑆𝐶(d𝑢|𝑥). Because for any 𝑓 with total variation at most 1 vanishing at
infinity, we have (Dudley [1992]),

|∫𝑓(𝑢) (𝐻0(d𝑢 ∣ 𝑥) − 𝐻0(d𝑢 ∣ 𝑥′))| ≤ sup
𝑢∈ℝ
|𝐻0(𝑢 ∣ 𝑥) − 𝐻0(𝑢 ∣ 𝑥′)|

≤ 𝐿‖𝑥 − 𝑥′‖,
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where the last inequality is a consequence of Assumption 2.2. The same
holds true for 𝑔 in virtue of Assumption 2.2. Hence, the map𝑀 is uni-
formly Lipschitz with respect to𝑋𝑗. Appealing to Lemma 2.15, we obtain
that the kernel ℎ𝑑𝔼 [𝑤𝑖,𝑗,𝑘(𝜑)𝐾𝑖𝑘𝐾𝑖𝑗 ∣ 𝑖, 𝑘] is vc with constant envelope
‖𝐾‖∞𝑀Φ𝐿/𝑏8. The same holds true for ℎ𝑑𝐴𝑘(𝜑) by Lemma 2.14. More-
over, observe that for all (𝜑, ℎ) ∈ Φ×]0, ℎ0], using eq. (2.62), we have
almost surely,

|𝐴𝑘(𝜑)| ≤
𝑀Φ
𝑏8
𝔼 [𝐾𝑖𝑗𝐾𝑖𝑘 ∣ 𝑍𝑘] .

Because

𝔼 [𝐾𝑖𝑗𝐾𝑖𝑘 ∣ 𝑍𝑘] = ∬𝐾ℎ(𝑥 − 𝑦)𝐾ℎ(𝑥 − 𝑋𝑘)𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦

= ∬𝐾(𝑧)𝐾ℎ(𝑥 − 𝑋𝑘)𝑔(𝑥)𝑔(𝑥 − ℎ𝑧) d𝑥 d𝑧

≤ 𝐿∫𝐾ℎ(𝑥 − 𝑋𝑘)𝑔(𝑥) (∫𝐾(𝑧) d𝑧)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1

d𝑥

≤ 𝐿2,

it follows that

𝔼[(ℎ𝑑𝐴𝑘(𝜑))
2] ≤ ℎ2𝑑 (𝑀Φ𝐿

2

𝑏8
)
2

.

Applying Corollary 2.12 to the kernel ℎ𝑑(𝐴𝑘(𝜑) − 𝔼[𝐴𝑘(𝜑)]) with 𝑘 = 1
and

‖𝐺‖∞ = 2‖𝐾‖∞
𝑀Φ𝐿
𝑏8
,

𝜎2 = ℎ2𝑑 (𝑀Φ𝐿
2

𝑏8
)
2

,

yields the bound

sup
𝜑∈Φ
|𝑛ℎ𝑑𝐿′𝑛(𝜑)| ≤

𝑀Φ𝐿2√𝑛ℎ𝑑

𝑏8
(𝐶1√log(2) + √log(𝐶2/𝜀)/𝐶3) ,

with probability 1 − 𝜀, provided a condition of the type

𝑛ℎ2𝑑 ≥ 𝑀2 |log(ℎ𝑑𝜀)| ,

ℎ ≤ ℎ0.

Straightforward calculations then give the desired result.
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Proof of Lemma 2.31 For all 𝜑 ∈ Φ, we first set

𝑤𝑖𝑗(𝜑) =
𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)𝟙𝑇𝑗≤𝑇𝑖 (1 − 𝛿𝑗)𝐾𝑖𝑗𝑐(𝑇𝑗 ∣ 𝑋𝑖)

𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)𝐻(𝑇𝑗 ∣ 𝑋𝑖)
,

and observe next that

𝑉𝑛,2(𝜑) = −
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

∫
𝑇𝑖

0

𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)

d (�̂�(𝑖)0,𝑛(𝑢 d𝑋𝑖) − 𝐻0,ℎ(𝑢 d𝑋𝑖))

= − 1
𝑛(𝑛 − 1)

∑
𝑖≠𝑗

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

× (
𝟙𝑇𝑗≤𝑇𝑖 (1 − 𝛿𝑗)𝐾𝑖𝑗𝑐(𝑇𝑗 ∣ 𝑋𝑖)

𝐻(𝑇𝑗 ∣ 𝑋𝑖)

− ∫
𝑇𝑖

0

𝑐(𝑢 ∣ 𝑋𝑖)
𝐻(𝑢,𝑋𝑖)

d𝐻0,ℎ(𝑢 d𝑋𝑖))

= − 1
𝑛(𝑛 − 1)

∑
𝑖≠𝑗
(𝑤𝑖𝑗(𝜑) − 𝔼 [𝑤𝑖𝑗(𝜑) ∣ 𝑍𝑗])

= 𝑈(1)𝑛,2 (𝜑) + 𝑈
(2)
𝑛,2 (𝜑),

where

𝑈(1)𝑛,2 (𝜑) = −
1
𝑛(𝑛 − 1)

∑
𝑖≠𝑗
(𝑤𝑖𝑗(𝜑) − 𝔼 [𝑤𝑖𝑗(𝜑) ∣ 𝑍𝑗]

− 𝔼 [𝑤𝑖𝑗(𝜑) ∣ 𝑍𝑖] + 𝔼 [𝑤12(𝜑)]),

(2.63)

𝑈(2)𝑛,2 (𝜑) =
1
𝑛

𝑛

∑
𝑖=1
(𝔼[𝑤𝑖𝑗(𝜑) ∣ 𝑍𝑖] − 𝔼[𝑤12(𝜑)]) . (2.64)

Hence, 𝑉𝑛,2(𝜑) can be decomposed as the sum of a degenerate 𝑈-statistic
defined in eq. (2.63) and an i.i.d. average defined in eq. (2.64). Note also
that, by eq. (2.60), we have

|𝑤𝑖𝑗(𝜑)| ≤
𝑀Φ
𝑏5
𝐾𝑖𝑗.

Thebound for𝑈(1)𝑛,2 (𝜑). By virtue of Lemmas 2.13 and 2.16, the collection
of kernels of the degenerate 𝑈-statistics

{ℎ𝑑𝑛(𝑛 − 1)𝑈(1)𝑛,2 (𝜑) ∶ (𝜑, ℎ) ∈ Φ×]0, ℎ0]} ,

forms a class of vc type with constants depending only on (𝑣, 𝐴),𝐾 and ℎ0.
In addition, these terms are all bounded by 4𝑀Φ‖𝐾‖∞/𝑏5 and we have:

𝕍[ℎ𝑑𝑤𝑖𝑗(𝜑)] ≤ (
4𝑀Φ
𝑏5
)
2
ℎ𝑑𝐿𝑐2𝐾.



2 Prediction and Censoring 99

It thus results from the application of Corollary 2.12 with 𝑘 = 2 and

𝜎2 = 42 (𝑀Φ
𝑏5
)
2
ℎ𝑑𝐿𝑐2𝐾,

that, with probability greater than 1 − 𝜀

sup
𝜑∈Φ
|ℎ𝑑𝑛(𝑛 − 1)𝑈(2)𝑛,1 (𝜑)|

≤ 𝑛ℎ𝑑/2𝑀1 (𝐶1 log(
𝑀2
ℎ𝑑/2
) + log(𝐶2/𝜀)
𝐶3
) , (2.65)

where𝑀1 and𝑀2 depends on𝑀Φ, 𝐾, 𝐿, 𝑏, provided a condition of the
type ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥ 𝑀2| log(𝜀ℎ𝑑/2)|.

The bound for𝑈(2)𝑛,2 (𝜑). Following the proof of Lemma 2.29, the collec-
tion of kernels of𝑈(2)𝑛,2 (𝜑) is of vc type with constant envelope. Besides, we
have, with probability one:

𝔼 [𝑤𝑖𝑗(𝜑) ∣ 𝑍𝑖] ≤
𝑀Φ𝐿
𝑏5
,

and therefore
𝕍[𝔼 [𝑤𝑖𝑗(𝜑) ∣ 𝑍𝑖]] ≤ (

𝑀Φ𝐿
𝑏5
)
2
.

Thus, after applying Corollary 2.12 with 𝑘 = 1 and

𝜎2 = 4 (𝑀Φ𝐿
𝑏5
)
2
,

‖𝐺‖∞ = 2
𝑀Φ𝐿
𝑏5
,

we obtain that, with probability 1 − 𝜀,

sup
𝜑∈Φ
|𝑛𝑈(2)𝑛,2 (𝜑)| ≤ 𝐶√𝑛(𝐶1√log(2) + √

log(𝐶2/𝜀)
𝐶3
) , (2.66)

where 𝐶 depends on𝑀Φ, 𝐾, 𝐿, 𝑏, provided a condition of the type 𝑛 ≥
𝑀3|log(𝑀4/𝜀)| holds true but this is already implied by ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥
𝑀2|log(𝜀ℎ𝑑/2)| whenever ℎ0 is small. The bound stated in the lemma
results from rearranging the bounds of eqs. (2.65) and (2.66).
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Proof of Lemma2.32 Using the triangle inequality togetherwith eqs. (2.52)
and (2.53) and Lemmas 2.22 and 2.23, we get with probability 1 − 𝜀 that

max
𝑖=1,…𝑛

sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)0,𝑛(𝑡, 𝑥) − 𝐻0(𝑡, 𝑥)| ≤ 𝑀1(

1
𝑛ℎ𝑑
+ √
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) ,

max
𝑖=1,…𝑛

sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)𝑛 (𝑡, 𝑥) − 𝐻(𝑡, 𝑥)| ≤ 𝑀2(

1
𝑛ℎ𝑑
+ √
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) .

We suppose further that both previous inequalities are realized. Note that
under the mentioned condition on (𝑛, ℎ), it holds that ∀(𝑡, 𝑥) ∈ 𝕂

inf
𝑖=1,…,𝑛
�̂�(𝑖)𝑛 (𝑡, 𝑥) ≥

𝑏3

2
.

In a similar fashion as in the proof of Theorem 2.6 (see eqs. (2.49) to (2.51)),
we apply Lemma 2.19 to get that

sup
(𝑡,𝑥)∈𝕂
| ̂𝑆(𝑖)𝐶,𝑛(𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)| ≤

2
𝑏

sup
(𝑡,𝑥)∈𝕂
|Λ̂(𝑖)𝐶,𝑛(𝑡 ∣ 𝑥) − Λ𝐶(𝑡 ∣ 𝑥)| .

Then, we apply Lemma 2.20, with 𝜃1 = 𝑏3, 𝜃2 = 𝑏3/2, 𝛽 = 1, to finally
obtain that: ∀𝑖 ∈ {1,…, 𝑛},

sup
(𝑡,𝑥)∈𝕂
| ̂𝑆(𝑖)𝐶,𝑛(𝑡 ∣ 𝑥) − 𝑆𝐶(𝑡 ∣ 𝑥)| ≤

2
𝑏
( 2
𝑏3

sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)0,𝑛(𝑡, 𝑥) − 𝐻0(𝑡, 𝑥)|

+ 2
𝑏6

sup
(𝑡,𝑥)∈𝕂
|�̂�(𝑖)𝑛 (𝑡, 𝑥) − 𝐻(𝑡, 𝑥)|)

≤ 𝑀1(
1
𝑛ℎ𝑑
+ √
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) .

Hence, provided that ℎ ≤ ℎ0 and 𝑛ℎ𝑑 ≥ 𝑀2|log(𝜀ℎ𝑑/2)|, we have

|𝑅″𝑛 (𝜑)| ≤
2𝑀Φ
𝑏3

sup
(𝑡,𝑥)∈𝕂
|𝑆𝐶(𝑡 ∣ 𝑥) − ̂𝑆

(𝑖)
𝐶,𝑛(𝑡 ∣ 𝑥)|

2
.

Proof of Lemma 2.33 Recall first that

𝑅′𝑛(𝜑) = −
1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖𝜑(𝑇𝑖, 𝑋𝑖)
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

�̂�(𝑖)𝑛 (𝑇𝑖 ∣ 𝑋𝑖),
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where

�̂�(𝑖)𝑛 (𝑡 ∣ 𝑥) = −∫
𝑡

0

𝑐(𝑢 ∣ 𝑥)
𝐻(𝑢, 𝑥)2�̂�(𝑖)𝑛 (𝑢, 𝑥)

× (�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥))
2 �̂�(𝑖)0,𝑛(d𝑢, 𝑥)

− ∫
𝑡

0

̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢 ∣ 𝑥),

and
Δ̂(𝑖)𝑛 (d𝑢 ∣ 𝑥) = Λ̂

(𝑖)
𝐶,𝑛(d𝑢|𝑥) − Λ𝐶(d𝑢|𝑥).

The following argument is based on Lemma 2.21, stated in §2.8.2. Note
that, on the event ℰ𝑛, we have:

|�̂�(𝑖)𝑛 (𝑡 ∣ 𝑥)| ≤
2
𝑏10
∫(�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻ℎ(𝑢, 𝑥))

2 �̂�(𝑖)𝑛 (d𝑢, 𝑥)

+ |∫
𝑡

0

̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢 ∣ 𝑥)|

≤ 2
𝑏10

sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻ℎ(𝑢, 𝑥)|

2

+ |∫
𝑡

0

̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢|𝑥)| .

The application of the Lemma 2.21, with 𝑆(2)(𝑢) = 𝑆𝐶(𝑢 ∣ 𝑥), 𝑆(1)(𝑢) =
̂𝑆(𝑖)𝐶,𝑛(𝑢 ∣ 𝑥), 𝛽 = 1, 𝜃 = 𝑏 and

Λ(1)(𝑢) = Λ̂(𝑖)𝐶,𝑛(𝑢 ∣ 𝑥)

= −∫
𝑢

𝑠=0

�̂�(𝑖)0,𝑛(d𝑠, 𝑥)
�̂�(𝑖)𝑛 (𝑠−, 𝑥)

,

Λ(2)(𝑢) = Λ𝐶(𝑢 ∣ 𝑥)

= −∫
𝑢

𝑠=0

𝐻0(d𝑠, 𝑥)
𝐻(𝑠−, 𝑥)

,

yields,

1
𝐶
|∫
𝑡

0

( ̂𝑆(𝑖)𝐶,𝑛(𝑢− ∣ 𝑥) − 𝑆𝐶(𝑢− ∣ 𝑥))
𝑆𝐶(𝑢 ∣ 𝑥)

Δ̂(𝑖)𝑛 (d𝑢 ∣ 𝑥)|

≤ sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥)|

2 + sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)0,𝑛(𝑢, 𝑥) − 𝐻0(𝑢, 𝑥)|

2

+ sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)𝑛 (𝑢, 𝑥)| ,
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where 𝐶 > 0 depends on 𝑏 and �̂�(𝑖)𝑛 (𝑡, 𝑥) is defined as

∫
𝑡

0
∫
𝑢

0
𝑐(𝑠 ∣ 𝑥)
(�̂�(𝑖)0,𝑛(d𝑠, 𝑥) − 𝐻0(d𝑠, 𝑥))

𝐻(𝑠, 𝑥)
(�̂�(𝑖)0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥))
𝑆𝐶(𝑢 ∣ 𝑥)𝐻(𝑢, 𝑥)

.

Using eqs. (2.52) and (2.53) combined with Lemmas 2.22 and 2.23, we
obtain that with probability at least 1 − 𝜀:

sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)𝑛 (𝑢, 𝑥) − 𝐻(𝑢, 𝑥)|

2 + sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)0,𝑛(𝑢, 𝑥) − 𝐻0(𝑢, 𝑥)|

2

≤ 𝑀1 (
1
(𝑛ℎ𝑑)2
+
|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ4) ,

as soon as ℎ ≤ ℎ0 and𝑀2| log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑. It remains to show that, with
probability at least 1 − 𝜀:

max
𝑖∈{1,…,𝑛}

sup
(𝑢,𝑥)∈𝛾𝑏
|�̂�(𝑖)𝑛 (𝑢, 𝑥)| ≤ 𝑀1 (

|log(ℎ𝑑/2𝜀)|
𝑛ℎ𝑑

+ ℎ2) , (2.67)

as soon as ℎ ≤ ℎ0 and𝑀2|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑. We first define �̂�𝑛,1(𝑡, 𝑥), for
all (𝑡, 𝑥) ∈ 𝕂,

∫
𝑡

0
∫
𝑢

0
𝑐(𝑠 ∣ 𝑥)
�̂�0,𝑛(d𝑠, 𝑥) − 𝐻0(d𝑠, 𝑥)
𝐻(𝑠, 𝑥)

�̂�0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)𝐻(𝑢, 𝑥)

,

and notice that, since

𝑐(𝑠 ∣ 𝑥)
𝐻(𝑠, 𝑥)𝑆𝐶(𝑢 ∣ 𝑥)𝐻(𝑢, 𝑥)

≤ 1
𝑏8
,

by using eq. (2.60), we have by virtue of eq. (2.52)

max
𝑖∈{1,…,𝑛}

sup
(𝑡,𝑥)∈𝕂
|�̂�𝑛,1(𝑡, 𝑥) − �̂�(𝑖)𝑛 (𝑡, 𝑥)| ≤

𝐶
𝑛ℎ𝑑
,

where 𝐶 is a constant depending on 𝑏 and 𝐾 only. Let

𝛼1(𝑢, 𝑥) =
1

𝑆𝐶(𝑢 ∣ 𝑥)𝐻(𝑢, 𝑥)
∫
𝑢

0
𝑐(𝑠 ∣ 𝑥)
𝐻0,ℎ(d𝑠, 𝑥) − 𝐻0(d𝑠, 𝑥)
𝐻(𝑠, 𝑥)

,

and note that

sup
(𝑢,𝑥)∈𝒦
|𝛼1(𝑢, 𝑥)| ≤ 𝑀1 sup

(𝑢,𝑥)∈𝒦
|𝐻0,ℎ(𝑢, 𝑥) − 𝐻0(𝑢, 𝑥)| ≤ 𝑀2ℎ2.
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We define �̂�𝑛,2(𝑡, 𝑥) as

∫
𝑡

0
∫
𝑢

0
𝑐(𝑠 ∣ 𝑥)
�̂�0,𝑛(d𝑠, 𝑥) − 𝐻0,ℎ(d𝑠, 𝑥)

𝐻(𝑠, 𝑥)
�̂�0,𝑛(d𝑢, 𝑥) − 𝐻0,ℎ(d𝑢, 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)𝐻(𝑢, 𝑥)

,

we have

�̂�𝑛(𝑡, 𝑥) = �̂�𝑛,2(𝑡, 𝑥)

+ ∫
𝑡

0
∫
𝑢

0
𝑐(𝑠 ∣ 𝑥)
�̂�0,𝑛(d𝑠, 𝑥) − 𝐻0,ℎ(d𝑠, 𝑥)

𝐻(𝑠, 𝑥)
𝐻0,ℎ(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥)
𝑆𝐶(𝑢 ∣ 𝑥)𝐻(𝑢, 𝑥)

+ ∫
𝑡

0
𝛼1(𝑢, 𝑥) (�̂�0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥))

+ ∫
𝑡

0
𝛼1(𝑢, 𝑥) (𝐻0,ℎ(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥)) .

Applying Fubini’s theorem in the second term, we see that the last three
terms are similar. We give the details only for the second one. We have

|∫
𝑡

0
𝛼1(𝑢, 𝑥) (�̂�0,𝑛(d𝑢, 𝑥) − 𝐻0(d𝑢, 𝑥))|

≤ ∫
𝑡

0
|𝛼1(𝑢, 𝑥)| (�̂�0,𝑛(d𝑢, 𝑥) + 𝐻0(d𝑢, 𝑥))

≤ sup
(𝑢,𝑥)∈𝒦
|𝛼1(𝑢, 𝑥)| sup

(𝑢,𝑥)∈𝒦
|�̂�0,𝑛(𝑢, 𝑥) + 𝐻0(𝑢, 𝑥)|

≤ 𝑀2ℎ2 sup
(𝑢,𝑥)∈𝒦
|�̂�0,𝑛(𝑢, 𝑥) + 𝐻0(𝑢, 𝑥)| .

In addition, observe that

�̂�𝑛,2(𝑡, 𝑥) =
1
𝑛2

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑣𝑖𝑗(𝑡, 𝑥)

= 1
𝑛2
∑
𝑖≠𝑗
𝑣𝑖𝑗(𝑡, 𝑥) +

1
𝑛2

𝑛

∑
𝑖=1
𝑣𝑖𝑖(𝑡, 𝑥)

≝ 𝑈𝑛(𝑡, 𝑥) + 𝑀𝑛(𝑡, 𝑥), (2.68)

where, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we set

𝑣𝑖𝑗(𝑡, 𝑥) = 𝑢𝑖𝑗(𝑡, 𝑥) − 𝔼 [𝑢𝑖𝑗(𝑡, 𝑥) ∣ 𝑍𝑖] − 𝔼 [𝑢𝑖𝑗(𝑡, 𝑥) ∣ 𝑍𝑗] + 𝔼 [𝑢1,2(𝑡, 𝑥)] ,

𝑢𝑖𝑗(𝑡, 𝑥) = 𝜉𝑖,𝑗(𝑥)𝟙𝑇𝑖≤𝑡𝐾ℎ(𝑋𝑖 − 𝑥)𝐾ℎ(𝑋𝑗 − 𝑥),

𝜉𝑖,𝑗(𝑥) =
𝛿𝑖𝛿𝑗𝑐(𝑇𝑗 ∣ 𝑥)

𝑆𝐶(𝑇𝑖, 𝑥)𝐻(𝑇𝑖, 𝑥)𝐻(𝑇𝑗, 𝑥)
𝟙𝑇𝑗≤𝑇𝑖 .
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Because we have, for all (𝑡, 𝑥) ∈ 𝕂,

𝔼 [𝑣12(𝑡, 𝑥) ∣ 𝑍1] = 𝔼 [𝑣12(𝑡, 𝑥) ∣ 𝑍2] = 0,

the collection of random variables

{𝑛2ℎ2𝑑𝑈𝑛(𝑡, 𝑥) ∶ (𝑡, 𝑥, ℎ) ∈ 𝕂×]0, ℎ0]} ,

is a degenerate 𝑈-process of order 2. The related class of kernels is uni-
formly bounded by 4||𝐾||2∞/𝑏8 and of vc type, by virtue of classic perma-
nence properties recalled in §2.8.1. Observe in addition that

𝕍[ℎ2𝑑𝑣12(𝑡, 𝑥)] ≤ ℎ4𝑑42𝔼 [𝑢212(𝑡, 𝑥)]

≤ ℎ4𝑑 ( 4
𝑏8
)
2
𝔼 [𝐾21𝑥𝐾22𝑥]

≤ ℎ2𝑑 ( 4
𝑏8
)
2
𝐿2𝑐4𝐾.

Applying Corollary 2.12 with 𝑘 = 2 and

𝜎2 = 4ℎ𝑑ℎ𝑑0
𝐿2

𝑏8
𝑐4𝐾,

‖𝐺‖∞ = 4
‖𝐾‖2∞
9𝑏8
,

we obtain that, with probability greater than 1 − 𝜀,

sup
(𝑡,𝑥)∈𝕂
|𝑈𝑛(𝑡, 𝑥)| ≤ 𝑀1

|log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑
, (2.69)

as soon as𝑀2|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑 and ℎ ≤ ℎ0. Notice now that, for all
(𝑡, 𝑥) ∈ 𝕂,

𝑀𝑛(𝑡, 𝑥) = 𝐿𝑛(𝑡, 𝑥) + 𝑅𝑛(𝑡, 𝑥),

where 𝐿𝑛 and 𝑅𝑛 are defined by

𝐿𝑛(𝑡, 𝑥) ≝
1
𝑛2

𝑛

∑
𝑖=1
(𝑣𝑖𝑖(𝑡, 𝑥) − 𝔼 [𝑣11(𝑡, 𝑥)]) ,

𝑅𝑛(𝑡, 𝑥) ≝
1
𝑛
𝔼 [𝑣11(𝑡, 𝑥)] .
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Observing that, for all (𝑡, 𝑥) ∈ 𝕂, we have

|ℎ2𝑑𝑣11(𝑡, 𝑥)| ≤ 4
‖𝐾‖2∞
𝑏8
,

𝕍 [ℎ2𝑑𝑣11(𝑡, 𝑥)] ≤ ℎ4𝑑42𝔼 [𝑢211(𝑡, 𝑥)]

≤ ℎ4𝑑 ( 4
𝑏8
)
2
𝔼 [𝐾41𝑥]

≤ ℎ𝑑 ( 4
𝑏8
)
2
𝐿∫𝐾4(𝑥) d𝑥.

We can apply Corollary 2.12 with 𝑘 = 1 to the empirical sums

{𝑛2ℎ2𝑑𝐿𝑛(𝑡, 𝑥) ∶ (𝑡, 𝑥, ℎ) ∈ 𝕂×]0, ℎ0]} ,

which gives us, with probability at least 1 − 𝜀,

sup
(𝑡,𝑥)∈𝕂
|𝐿𝑛(𝑡, 𝑥)| ≤ 𝑀1

√|log(𝑀2/ℎ𝑑/2)| + √ log(𝐶2/𝜀)/𝐶3
(𝑛ℎ𝑑)3/2

, (2.70)

where𝑀1 and𝑀2 are constants depending on 𝐾, 𝑏 and 𝐿. The previous
bound is valid whenever𝑀2|log(𝜀ℎ𝑑/2)| ≤ 𝑛ℎ𝑑 and ℎ ≤ ℎ0. We also have

1
𝑛
𝔼 [|𝑣11(𝑡, 𝑥)|] ≤

4
𝑛
𝔼 [|𝑢11(𝑡, 𝑥)|] ≤

4𝐿𝑐2𝐾
𝑏8𝑛ℎ𝑑

This leads to the stated results.



71: More generally known as a
Stone type estimator.

72: And therefore 𝑆𝑌 = ∫𝑝𝑌 d𝑡.

73: Without any of the problems
encountered in the previous
chapter. There is no reweighing
needed here.

Flexible Generative Survival Models 3
3.1 Introduction
In the previous chapter, we showed how to adapt the erm framework to the
survival analysis setting; this approach, however, presupposes the ability
to properly estimate the survival function of the censoring variable. While
we proved empirically that a straightforward kernel estimator is enough
to obtain good results, the quality of the resulting estimator depends
heavily on the quality of the Kaplan-Meier weights i.e. of the estimator
1/ ̂𝑆𝐶 of the true weights 1/ ̂𝑆𝐶. Estimators of the ipcw weights can be
constructed fairly easily from plugin estimators of 𝑆𝐶 by reusing tools
from the density estimation literature in order to learn a parametric family
of the unobserved time 𝐶. This is the approach we adopted in the previous
chapter by employing a kernel conditional formulation inspired by kernel
density estimation.71

We will momentarily switch to the point of view of the estimation of 𝑆𝑌
as, due to the symmetry between𝑌 and𝐶, it is strictly identical to that of 𝑆𝐶
but has a wider and more understandable applicability in general, barring
our very specific need of 𝑆𝐶 for the construction of ipcw weights. The
fact that, in the censored setting, we only observe the variables (𝑇, 𝛿, 𝑋)
instead of (𝑌,𝑋) does not prove to a problem if the task is the estimation
of the density. Notice, after simple manipulations, that it is possible in the
right censored setting to write the likelihood of the observed data in terms
of relevant quantities only:

ℙ (𝑇, 𝛿 ∣ 𝑋) ∝ 𝑝𝑌(𝑇 ∣ 𝑋)𝛿𝑆𝑌(𝑇 ∣ 𝑋)1−𝛿, (3.1)

where 𝑝𝑌 is the density of the unknown conditional distribution of 𝑌 ∣ 𝑋,
our unobserved variable of interest, and 𝑆𝑌 its corresponding survival
function. From eq. (3.1) it is easy to see that the task of estimating the best,
for the specific criterium of the log-likelihood, family defined by 𝑝𝑌 72 can
itself be framed as an empirical risk minimization problem73

argmin
𝑝𝑌,𝑆𝑌

𝑛

∑
𝑖=1
−𝛿𝑖𝑝𝑌(𝑇𝑖 ∣ 𝑋𝑖) − (1 − 𝛿𝑖) 𝑆𝑌(𝑇𝑖 ∣ 𝑋𝑖), (3.2)

106
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74: Ideally we would like the
quantity in eq. (3.2) to be a sum
of smooth convex functions, in
practice we only ask for differen-
tiability.

75: The proof actually makes
use of the ipcw representation
of the previous chapter: notice
that both ̂𝑆𝐶 and ̂𝑆𝑌 admit a
coupled ipcw form in term of the
other. By substituting in eq. (3.2),
one obtains the Kaplan-Meier
estimator.

and therefore solved as long as the estimators chosen for 𝑝𝑌 and 𝑆𝑌 result
in a problem amenable to optimization.74 Even without any parametric
restriction on the choices of 𝑝𝑌 and 𝑆𝑌, the previous quantity can be
minimized unconditionally such that the nonparametric minimizer of the
previous quantity is exactly the Kaplan-Meier estimator of Kaplan and
Meier (1958).75 It is then possible, given a sufficiently well behaved yet
powerful parametric family of survival distributions defined by (𝑝𝑌(⋅ ∣
𝜃), 𝑆𝑌(⋅ ∣ 𝜃)), to learn a flexible estimator of (𝑝𝑌, 𝑆𝑌). Note that while we
refer to the tuple (𝑝𝑌, 𝑆𝑌), which summarizes the quantities needed to
compute eq. (3.2), we only need to estimate a single one of these quantities
and then deduce the other by using the former as a plugin. Consequently,
in this chapter we present a novel way to build a flexible estimator of
the survival 𝑆 by making use of normalizing flows. Through the use of a
more expressive family of neural based estimators, we are able to obtain
better conditional estimators of 𝑆𝑌 (resp. 𝑆𝐶) when the data generating
process cannot be easily modelled using classical tools, as is usually the
case for highly unstructured covariates such text, or when the usual model
assumptions, such as for example the proportional hazards assumption,
are violated.

Parts of this chapter generally follow the work published in Ausset,
Ciffreo, et al. (2021) at IEEE DSAA’21, where we proposed the use of nor-
malizing flows for survival analysis. In §3.3 we motivate the need for
generative models for many applications including medicine and finance.
In §3.3.2, in order to lay the groundwork for our method, we present nor-
malizing flows as introduced by Rezende and Mohamed (2015) in their
discrete formulation and by R. T. Q. Chen et al. (2018) in their continuous
form. In §3.4 we show how normalizing flows can be adapted to the un-
conditional survival analysis setting while we reintroduce conditioning
in §3.5 with conditional survival flows. Finally, in §3.6 we illustrate em-
pirically how the flexibility of survival flows helps improve performance
on common tasks while applications to finance will be studied in more
details in chapter 5.

About this Chapter
The rest of this chapter is in large part reproduced from the paper
“Individual Survival Curves with Conditional Normalizing Flows”
with Tom Ciffreo, Timothée Papin, Stéphan Clémençon and François
Portier presented at IEEE DSAA’21. Some of the results established in
this chapter have applied internally at BNP Paribas on internal data.
While impossible to reproduce those results in the thesis, similar
experiments on related financial data while be presented later.
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Guillaume Ausset, Tom Ciffreo, et al. (2021). “Individual Survival
Curves with Conditional Normalizing Flows”. In: DSAA’21. IEEE
International Conference on Data Science and Advanced Analytics

3.2 Estimators of the Survival
Multiple quantities can be equivalently modelled in order to uniquely
define the distribution of the survival times, each leading to a different
approach and therefore estimator of 𝑆𝑌. The particular structure of the
right censored problem enables the possibility to model interchangeably
either the density 𝑝𝑌(⋅ ∣ 𝑋 = 𝑥) of 𝑌 ∣ 𝑋 = 𝑥, its survival function
𝑆𝑌(⋅ ∣ 𝑋 = 𝑥) defined by

𝑆𝑌(𝑦 ∣ 𝑋 = 𝑥) = ∫
∞

𝑦
𝑝𝑌(𝑢 ∣ 𝑋 = 𝑥) d𝑢,

the instantaneous hazard rate 𝜆𝑌(⋅ ∣ 𝑋 = 𝑥) or the integrated hazard rate
Λ𝑌(⋅ ∣ 𝑋 = 𝑥), defined by:

𝜆𝑌(𝑦 ∣ 𝑋 = 𝑥) = lim
d𝑦→0

ℙ(𝑦 ≤ 𝑌 ≤ 𝑦 + d𝑦 ∣ 𝑦 ≤ 𝑌,𝑋 = 𝑥)
d𝑦

,

Λ𝑌(𝑦 ∣ 𝑋 = 𝑥) = ∫
𝑦

0
𝜆𝑌(𝑢 ∣ 𝑋 = 𝑥) d𝑢,

Λ𝑌(𝑦 ∣ 𝑋 = 𝑥) = ∫
𝑦

0

𝐹𝑌(d𝑢)
𝑆𝑌(𝑢− ∣ 𝑋)

.

(3.3)

Any of the previous four quantities fully characterizes the conditional
law of 𝑌 given𝑋 and can be used to recover the other three through the
identities

d𝑆𝑌(𝑦 ∣ 𝑋 = 𝑥)
d𝑡

= −𝜆𝑌(𝑦 ∣ 𝑋 = 𝑥)𝑆𝑌(𝑦 ∣ 𝑋 = 𝑥),

𝑆𝑌(𝑦 ∣ 𝑋 = 𝑥) = exp(−Λ𝑌(𝑦 ∣ 𝑋 = 𝑥)) .
(3.4)

The links between all those quantities are summarized in fig. 3.1. The
symmetry between the roles of Λ and 𝑆 is more than apparent and follows
from the product-integral construction of the survival. If one defines the
interval measure in terms of hazard and survival, that is

Λ𝑌(𝑠, 𝑡) = Λ𝑌 (]𝑠, 𝑡]) = Λ𝑌(𝑡) − Λ𝑌(𝑠),

𝑆𝑌(𝑠, 𝑡) = 𝑆𝑌 (]𝑠, 𝑡]) =
𝑆𝑌(𝑡)
𝑆𝑌(𝑠)
= ℙ (𝑌 > 𝑡 ∣ 𝑌 > 𝑠) ,

(3.5)
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Hazard

PDF

Survival

CDF

Cumulative
Hazard

d⋅
d𝑡

∫
𝑡

0
⋅ d𝑠

exp(−⋅) − log(⋅)

1 − ⋅

d⋅
d𝑡

∫
𝑡

0
⋅ d𝑠

⋅
𝑆(𝑡)⋅ × 𝑆(𝑡)

Figure 3.1: A map of the quanti-
ties defining the survival.

76: The notion of product-
integral was introduced in
1887 by Volterra (of the Lotka-
Volterra’s fame) to characterise
forward-backward differential
equations. As survival analysis,
seen through the scope of coun-
tring processes, involves markov
processes; the product-integral
formulation plays an important
role. The symbol here was intro-
duced by Gill in his studies of the
product-integral in the survival
analysis setting (see Gill (1994);
Andersen et al. (1993)), based
on the earlier works of Nerney
(1963) and Dobrushin (1953). Это
советская власть до самого
конца.

then Λ𝑌 is an additive interval function i.e. for 𝑠 ≤ 𝑡 ≤ 𝑢 we have

Λ𝑌(𝑠, 𝑢) = Λ𝑌(𝑠, 𝑡) + Λ𝑌(𝑡, 𝑢),

and 𝑆𝑌 is a multiplicative interval function i.e.

𝑆𝑌(𝑠, 𝑢) = 𝑆𝑌(𝑠, 𝑡)𝑆𝑌(𝑡, 𝑢),

The link between the two quantities can then be expressed infinitesimally
as

Λ𝑌(d𝑠) = 1 − 𝑆𝑌(d𝑠),
𝑆𝑌(d𝑠) = 1 − Λ𝑌(d𝑠),

and expressed in integral form as

Λ𝑌(𝑡) = Λ𝑌(0, 𝑡) = ∫
𝑡

0
(1 − 𝑆𝑌(d𝑠)) ,

𝑆𝑌(𝑡) = 𝑆𝑌(0, 𝑡) =
P

𝑡

0
(1 − Λ𝑌(d𝑠)) ,

where
p

is the product-integral76 operator, defined analogously to the
usual sum-integral as the limit of the product over partitions of ]0, 𝑡] with
the mesh converging to zero.

The instantaneous hazard rate is usually considered the most natural
quantity insofar as it can be directly interpreted: it represents the instanta-
neous probability of an event happening now as opposed to the density
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77: Surprisingly, to the best of
my knowledge, this estimator do
not appear to have any name.

𝑝𝑌 which represents the instantaneous probability of an event happening
seen from the origin 𝑌 = 0. Moreover, the intensity as seen as an interval
function as done in eq. (3.5), is additive and has a direct interpretation
in terms of transition intensity when the survival process is seen as a
markovian process. Choosing to estimate 𝜆𝑌 is therefore a sensible choice.
The simplest, unconditional and nonparametric, estimator of 𝜆𝑌 is due to
the work of Nelson (1969, 1972) and Aalen (1978) where the intensity is
estimated by the ratio

�̂�𝑌(𝑡𝑖) =
𝑑𝑖
𝑟𝑖
,

where 𝑑𝑖 is the number of events at time 𝑡𝑖 and 𝑟𝑖 is the number of individ-
uals still alive just before 𝑡𝑖, also called the risk set. From this estimation
one can then obtain the cumulative hazard from the hazard as a plugin:

Λ̂𝑌(𝑡) = ∑
𝑖∶𝑡𝑖≤𝑡

𝑑𝑖
𝑟𝑖
.

Similarly as done in the previous chapter, it is possible to kernelize the
previous estimator in order to obtain a conditional version77 at𝑋 = 𝑥

Λ̂𝑌(𝑡 ∣ 𝑋 = 𝑥) = ∑
𝑖∶𝑡𝑖≤𝑡

∑𝐾ℎ(𝑋𝑖 − 𝑥)𝟙𝑇𝑖≤𝑢,𝛿𝑖=1
∑𝐾ℎ(𝑋𝑗 − 𝑥)𝟙𝑇𝑗>𝑢

.

A version of this estimator is for example studied by Dabrowska (1988)
but, generally, those kernelized estimators are rarely used alone as they
are highly susceptible to the pitfalls of the curse of dimensionality and
therefore prone to overfitting and low performance.

Beyond nonparametric approaches, semi-parametric or fully parametric
models of the hazards have enjoyed great successes. Under a proportion-
ality hypothesis of the type 𝜆𝑌(𝑡 ∣ 𝑋) = 𝜆0(𝑡)𝜆𝑌,𝑥(𝑋), i.e. such that

𝜆𝑌(𝑡 ∣ 𝑋𝑖)
𝜆𝑌(𝑡 ∣ 𝑋𝑗)

=
𝜆𝑌,𝑥(𝑋𝑖)
𝜆𝑌,𝑥(𝑋𝑗)

,

where the last equality is constant with respect to the time. It is possible to
form the partial log-likelihood

∑
𝑖
𝛿𝑖(log(𝜆𝑌,𝑥(𝑋𝑖)) − log( ∑

𝑗∶𝑇𝑗≥𝑇𝑖

𝜆𝑌,𝑥(𝑋𝑗))) , (3.6)

which can be maximized straightforwardly. The usual choice of

𝜆𝑌,𝑥(𝑋) = exp(𝑋
⊺𝛽) ,
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78: Take for example the case
of the study of a new medica-
tion compared to another, or a
placebo. The overall efficacy of
the medication may not be that
important but only its perfor-
mance compared to the existing
medication.
79: As a way to regularize or
to introduce priors, if there are
reasons to believe some specific
distribution is adapted.

80: It is possible to see survival
analysis as a missing data prob-
lem, which can then be solved
by use of em algorithm. The
use of latent variable and the
expectation-maximization proce-
dure is general enough to be of
interest to all readers.

yields the standard estimator of D. R. Cox (1972), which enjoys a lasting
popularity due to its high interpretability: the coefficients 𝛽 directly model
the log odds ratios. As the choice of 𝜆𝑌,𝑥 is left to the practitioners recent
approaches, such as DeepSurv (Katzman et al. [2018]) where 𝜆𝑌,𝑥 is taken
as a deep neural network, have employed increasingly flexible families
of functions. Of course, it is only possible at first glance from the pre-
vious quantity of eq. (3.6) to learn the proportional components of the
hazard, which in many cases such as comparing the relative survival of one
group compared to another is sufficient,78 but in our case it is necessary
to also estimate the baseline hazard 𝜆0. Fortunately, this is possible both
in the parametric case where the distribution of the baseline survival is
enforced79 but also without specifying any model on 𝜆0. This latter, rather
surprising, result is due to Breslow (1975) and fit in the more general non-
parametric maximum likelihood estimation (npmle) framework. Breslow
proposes the joint maximization of the likelihood in both 𝜆𝑌,𝑥 and 𝜆0 by
treating 𝜆0 as a piecewise constant between uncensored failure times. By
maximizing

∑
𝑖
(𝛿𝑖 (log(𝜆𝑌,𝑥(𝑋𝑖)) + log(𝜆0(𝑇𝑖))) − ∫

𝑇𝑖

0
𝜆𝑌,𝑥(𝑋𝑖)𝜆0(𝑢) d𝑢) ,

one obtains the surprisingly simple result that

Λ̂0(𝑡) =
𝑛

∑
𝑖=1

𝟙𝑇𝑖≤𝑡𝛿𝑖
∑𝑗∶𝑇𝑗≥𝑇𝑖 𝜆𝑌,𝑥(𝑋𝑗)

.

While the proportional hazard hypothesis is restrictive it is possible to
relax it, either by allowing 𝜆𝑌,𝑥 to depends on the time 𝑡 (but still keeping
the baseline hazard 𝜆0), which is the approach taken by Kvamme, Borgan,
and Scheel (2019), or by modelling the survival as a mixture of 𝐾 Cox
models which is the approach taken by Nagpal et al. (2021) where they
model the 𝑍-integrated log-likelihood as

∑
𝑖

𝐾

∑
𝑘=1
𝑝𝑘(𝑋𝑖)(𝛿𝑖 (log(𝜆𝑌,𝑥,𝑘(𝑋𝑖)) + log(𝜆𝑌,0,𝑘(𝑇𝑖)))

− ∫
𝑇𝑖

0
𝜆𝑌,𝑥,𝑘(𝑋𝑖)𝜆𝑌,0,𝑘(𝑢) d𝑢), (3.7)

where 𝑝𝑘(𝑋𝑖) = ℙ(𝑍 = 𝑘 ∣ 𝑋 = 𝑋𝑖) is the assignment probability of the
𝑘-th component with 𝑍 a latent variable introduced purely for the sake
of making the problem easier. Note that the previous quantity of eq. (3.7)
is not the log-likelihood ℒ but the integrated log-likelihood 𝔼𝑍∣𝑋[ℒ]. In
order to maximize the likelihood, it is necessary to use the expectation
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81: Note therefore, that this
model can be seen simultane-
ously as a model of the hazard
ℎ𝑌 and therefore trained as
usual by maximixation of the
partial log-likelihood, but also
as a regression model of the
transformed target log(𝑌) and a
transformed model of 𝑌. The last
point of view will be of particular
interest to us later.

maximization (em)80 algorithmofDempster, Laird, andD. B. Rubin (1977),
that is to maximize a lower bound of the true log-likelihood by iteratively
forming the expectation and then maximizing the newly obtained bound.
While, as previously, it is possible to parametrize the mixtures themselves
using neural networks as is done in DeepSurv; Nagpal et al. (2021) chose
to parametrize the mixture parameters 𝑝𝑘 themselves a a neural network
of the form

𝑝𝑘(𝑥) = softmax(nn(𝑥)).

Note that under the mixture model the hazard rates then have the form

𝜆𝑌(⋅ ∣ 𝑥) =
∑𝑘 ℙ(𝑡 ∣ 𝑥, 𝑍 = 𝑘)ℙ(𝑍 = 𝑘 ∣ 𝑥)
∑𝑘 𝑆𝑌(𝑡 ∣ 𝑥, 𝑍 = 𝑘)ℙ(𝑍 = 𝑘 ∣ 𝑥)

,

which violates in general the proportional hazard assumption. As a con-
sequence, it is not possible to directly maximize the partial likelihood
as is done in the usual Cox model. Similarly in spirit to the previous
approaches, Fernandez, Rivera, and Teh (2016) make use of Gaussian
processes to model the instantaneous hazard rate such that

𝑙(⋅) ∼ 𝒢𝒫(0, 𝐾),
𝜆(𝑡, 𝑋𝑖) = 𝜆0(𝑡)𝜎 (𝑙(𝑡, 𝑋𝑖)) ,

where 𝒢𝒫 denotes a Gaussian process and𝐾 is a kernel. Deviating from
the proportional hazard hypothesis and related approaches, it is possible
to consider an aft formulation of the hazard,

𝜆𝑌 (𝑡 ∣ 𝑋) = 𝑓 (𝑋) 𝜆𝑌,0 (𝑓(𝑋)𝑡) .

It is possible to show that, under this model, both the density and the
survival follow a simple relation

𝑝𝑌 (𝑡 ∣ 𝑋) = 𝑓 (𝑋) 𝑝𝑌,0 (𝑓(𝑋)𝑡) ,
𝑆𝑌 (𝑡 ∣ 𝑋) = 𝑆𝑌,0 (𝑓(𝑋)𝑡) .

Therefore, if we denote by 𝜖 the random variable distributed according to
𝑝𝑌,0,81 we can then formulate the time-to-event as a simple transformation
of 𝜖 of the form

log(𝑌) = − log(𝑓(𝑋)) + log(𝑌𝑓(𝑋))
≝ − log(𝑓(𝑋)) + 𝜖, (3.8)

More generally, and similarly to the approach we will introduce later, it
is possible to entirely discard the proportional hazard or aft hypothesis
provided one is able to solve a differential equation, which is the approach
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① Alive

② Cause A

③ Cause B

𝜆12(
𝑡)

𝜆13 (𝑡)

(a) Competing Hazards Model

① Healthy

② Illness

③ Death

𝜆12(
𝑡)

𝜆13 (𝑡)

𝜆23(𝑡)

(b) Illness-Death Model

Figure 3.2: Multistate survival
models.

82: Referred as the 1-state model,
if we consider “alive” to be a
default state.
83: In this framework, each
cause of death censor the other
causes of deaths in a certain way.
The usual censoring can also be
present.

taken by Groha, Schmon, and Gusev (2020). Remember that the partial
likelihood can be written as

∑
𝑖
(𝛿𝑖 log(𝜆𝑌(𝑇𝑖, 𝑋𝑖)) − ∫

𝑇𝑖

0
𝜆𝑌(𝑢, 𝑋𝑖) d𝑢) .

By modelling 𝜆𝑌(𝑥, 𝑥) directly, for example as a neural network, it is
then possible to maximize the previous quantity provided one is able to
compute the integral of 𝜆𝑌(𝑥, 𝑥) as well as maximize objects involving
integrally defined quantities. The previous approach has the advantage
of imposing next to no modelling constraints such as the positivity or
monotony constraints present in Λ𝑌, 𝑆𝑌 or even 𝑝𝑌.

Note that we earlier justified seeing 𝜆 as the natural quantity of the
survival because of its interpretation as the intensity of amarkovian process.
It is actually possible to extend the survival models based on the estimation
of 𝜆𝑌 to multi-state survival analysis that is, instead of only considering
the states alive/dead,82 to also consider intermediate or adjacent states.
This extended framework includes for example the competing hazards
model of fig. 3.2a where death can occur for multiple reasons83 or the
illness-death model of fig. 3.2b. In multistate models, if we denote the state
transition probabilities by

ℙ𝑖𝑗 (𝑠, 𝑡) = ℙ𝑖𝑗 (𝑍(𝑡) = 𝑗 ∣ 𝑍(𝑠) = 𝑖) ,

where 𝑍 is the state, with finite state space of size𝑚 and 𝑡𝑖𝑗 the 𝑗-th time
for the observation 𝑖, then the likelihood of the model can be written as

𝑛

∏
𝑖=1
ℙ (𝑍𝑖(𝑡𝑖1))

𝑚𝑖−1

∏
𝑗=2
ℙ𝑍𝑖(𝑡𝑖𝑗−1)𝑍𝑖(𝑡𝑖𝑗 )(𝑡

𝑖
𝑗−1, 𝑡𝑖𝑗)𝜆𝑍𝑖(𝑡𝑖𝑗−1)𝑍𝑖(𝑡𝑖𝑗 )(𝑡

𝑖
𝑗)

× ℙ𝑍𝑖(𝑡𝑖𝑚𝑖−1)𝑍𝑖(𝑡𝑖𝑚𝑖 ) (𝑡
𝑖
𝑚𝑖−1, 𝑡

𝑖
𝑚𝑖) (𝜆𝑍𝑖(𝑡𝑖𝑚𝑖−1)𝑍𝑖(𝑡𝑖𝑚𝑖 )(𝑡

𝑖
𝑚𝑖 ))
𝛿𝑖 ,

As we know that, under the Markov assumption, the transition probabili-
ties must obey the Kolmogorov forward equation

dℙ𝑖𝑗(𝑠, 𝑡)
d𝑡
= ∑
𝑘
ℙ𝑖𝑘(𝑠, 𝑡)𝜆𝑘𝑗(𝑡),



3 Flexible Generative Survival Models 114

84: See fig. 3.3.

𝑘 = 0.5
𝑘 = 1
𝑘 = 1.5
𝑘 = 5

Figure 3.3: Weibull distribution
for 𝛼 = 1 and varying 𝑘.

then, provided that we know how to solve and minimize through systems
of odes, we can extend the previous method integrally defined method
to multistate models which is the extension proposed by Groha, Schmon,
and Gusev (2020).

As summarized earlier in fig. 3.1, the hazard is not the only quantity
possible if one wants to completely characterize the survival distribution.
We have seen that direct modelling of the survival 𝑆 itself has proven to
be highly successful: the npmle approach applied to the likelihood with
the survival as the object of interest yields the Kaplan-Meier estimator as
well as its conditional versions but it is also possible to directly estimate
the density of event times. Estimation of 𝑝𝑌 can be achieved by multiple
means: either by parametrization of a known parametric model, which
is the approach taken by Ranganath et al. (2016) where a neural network
parametrizes a deep exponential family such that

𝑎 ∼ 𝒩(0, 𝜎𝑎)
𝑏 ∼ 𝒩(0, 𝜎𝑏)
𝑧𝑛 ∼ DEF(𝜃)
𝑥𝑛 ∼ 𝑔(⋅ ∣ 𝛽, 𝑧𝑛)
𝑡𝑛 ∼ 𝒲(log(1 + exp(𝑧

⊺
𝑛𝑎 + 𝑏) , 𝑘)) ,

whereDEF(𝜃) denotes a deep exponential family parametrized by 𝜃, 𝑔 is a
prior distribution on the data, and𝒲(𝛼, 𝑘) theWeibull distribution84 with
scale 𝛼 and shape 𝑘. Similarly, in Martinsson (2016) a recurrent neural
network is used to parametrize the parameters of a Weibull such that

𝑇𝑖 ∼ 𝒲(rnn1(𝑋𝑖1,…,𝑋𝑖𝑡), rnn2(𝑋𝑖1,…,𝑋𝑖𝑡)) ,

where 𝑋𝑖𝑡 is the covariate vectors of individual 𝑖 at time 𝑡. (𝑋𝑖1,…,𝑋𝑖𝑡)
is therefore the whole history of the covariates of for the individual 𝑖
when those are time varying. While simpler than the deep exponential
family approach, the previous approach is able to naturally deal with time-
varying covariates and produce new predictions dynamically as new data
is acquired. These approaches, while able to encode complex relations in
the data by means of neural networks, are still constrained by the choice of
parametric family. Attempts to model the density without such restrictive
assumptions have been presented in C. Lee, Zame, et al. (2018); C. Lee,
Yoon, and Schaar (2020) where they directly model the density without
making any assumption on the distribution but do so by discretizing the
space, an undesirable limitation. We have seen earlier that Groha, Schmon,
and Gusev (2020) directly model 𝜆𝑌 before solving an ode to maximize
the likelihood and nothing, however, prevents the same technique to
be applied to the density 𝑝𝑌 directly provided one is careful to impose
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85: Sampling can often be per-
formed later as a by-product by
means of rejection sampling or
other similar techniques.

positivity as well as integration to 1. In practice those two constraints
prove too hard to impose exactly and approaches based on penalizing
towards these constraints have significant shortcomings (such as exploding
logarithms) that makes then impractical.

In order to solve those significant shortcomings, and inspired by the ap-
proaches of Ranganath et al. (2016) and Martinsson (2016) where a simple
variable is transformed to more closely resemble the survival distribution
of interest, Miscouridou et al. (2018) propose the use of normalizing flows,
that is mappings𝑚 ∶ ℝ ↦ ℝ+ such that the survival 𝑌 is the image of a
random variable 𝑍 ∼ 𝒵 where 𝒵 is a simpler and known distribution i.e.

𝑌 = 𝑚(𝑍).

The authors then show that a lower bound of the censored likelihood can
be optimized, yielding a flexible estimator of the density of the survival
distribution. This last approach, while used primarily by the authors
as a way to build an estimator of the density is, however, strictly more
powerful: by having access to the transformed distribution directly we
are able to quickly build estimators of most of the quantities of interest
as well as efficiently sample from the survival distribution by virtue of
having access to a generative model. While sampling is often seen as a
secondary concern,85 it has enjoyed a renewed interest from the machine
learning field. Given that the financial industry benefits greatly from
access to efficient sampling methods in order to perform stress tests as
well as complex Monte Carlo simulations, we are particularly interested in
generative models that can also be used to compute accurate ipcw weights.

3.3 Generative Models
Driven by the phenomenal advances inmachine learning, the expectations
of the possible applications from users and practitioners alike have risen in
consequence. In fields such as image processing and natural language pro-
cessing (nlp), while a decade ago the flagship problems were classification
problems (and still are of great interest, as many seemingly more complex
problems can be reframed as instances of classification problems), research
and public interest has now shifted toward the problem of generation, that
is the creation of new samples from a learned distribution.

Generative models have successfully been employed on images (see
Brock, Donahue, and Simonyan [2019]), making it possible to generate
realistic-looking images, potentially conditioned on some input. While
from a purely theoretical point of view the task is interesting, one may
still wonder “why on earth would I want to sample images?”. These tech-
niques have found a wide range of practical applications such as generating
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Figure 3.4: These people do not
exist.

Figure 3.5: Generating novel
context specific animations
without manual intervention.

86: Or even statistics.
87: In the sense of modelling the
financial objects tradable on the
markets.

character portraits in video games (Karras, Laine, Aittala, et al. [2020]),
generating realistic character animations for tasks where no motion cap-
ture data is available (Holden et al. [2020]; Harvey et al. [2020]), trans-
forming images conditionally on some inputs (Karras, Laine, and Aila
[2019]), or augmenting data to create more robust training sets (Sandfort
et al. [2019]). Similar techniques have been applied to speech, leading to
tremendous improvements in text-to-speech (Yuxuan Wang et al. [2017];
Oord et al. [2016]) and opening up the possibility of artificially generating
music (Dhariwal et al. [2020]). While less successful in their scope than
the previous examples, attempts to use generative models with text have
yielded many applications, from translation (Sutskever, Vinyals, and Le
[2014]) and abstractive summarization (Lewis et al. [2020]), to automatic
generation of financial reports from structured data (Rebuffel et al. [2020])
or augmentation of textual data (Dopierre, Gravier, and Logerais [2021]).

3.3.1 Generative Models in Finance
While usually not studied from the perspective of machine learning ,86 the
majority ofmodels developed for the purpose of financialmodelling87 have
historically been generative models. The models used to price derivatives
usually involve the use of parametric generative models describing the
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88: While out of the scope of
this thesis, we quickly explain
how traditional mathematical
finance works as it happens to
use very similar techniques than
those used in survival analysis
and recently in diffusion flows.
Usually an asset is assumed to
follow some diffusion process
governed by an sde then, under
some assumptions, the price of a
derivative of that asset can then
be assumed to be equal to the
expected value of some func-
tional of the diffusion under a
risk neutral martingale measure.
The price of the derivative can
then be computed by writing a
Kolmogorov or Fokker-Planck
equation and solving the cor-
responding partial differential
equation (pde).
89: Within reason; any non-
standard methodology needs to
be motivated before the regula-
tor.

distribution of the underlying object, such as the Heston model (Heston
[1993]) described by the stochastic differential equation (sde)

d𝑆𝑡 = 𝜇𝑆𝑡 d𝑡 + √𝜈𝑡𝑆𝑡 d𝑊𝑡
d𝜈𝑡 = 𝜃(𝜔 − 𝜈𝑡) d𝑡 + 𝜉√𝜈𝑡 d𝐵𝑡

d𝑊𝑡 d𝐵𝑡 = 𝜌 d𝑡,

where 𝑊𝑡 and 𝐵𝑡 are standard Wiener processes; or the “stochastic al-
pha, beta, rho” (sabr) model (Hagan, Lesniewski, and Woodward [2015])
defined by

d𝑆𝑡 = 𝜎𝑡𝑆
𝛽
𝑡 d𝑊𝑡

d𝜈𝑡 = 𝛼𝜈𝑡 d𝐵𝑡
d𝑊𝑡 d𝐵𝑡 = 𝜌 d𝑡,

which are then calibrated using the prices of derivatives observed on the
market.88 Once those generative models have been calibrated, they can
be used to generate synthetic data, for example to test trading strategies,
to perform backtests or even for anomaly detection. While those meth-
ods have been primarily developed because closed-form solutions exist
and made cheap computations possible, recent trends have been toward
more expensive and less interpretable models in exchange of more flexibil-
ity. Henry-Labordere (2019) proposes to learn nonparametric generative
models as an alternative to the sabr model for the generation of financial
data as well as anomaly detection. Similarly, Takahashi, Y. Chen, and
Tanaka-Ishii (2019); Binkowski, Marti, and Donnat (2018) use generative
models for time series andMarti, Goubet, and Nielsen (2021); Marti (2020)
use generative adversarial network (gan) to sample correlation matrices
for portfolio stress testing. The Basel III as well as the future Basel IV
regulations (Basel Committee [2018]) have made stress testing of credit
risk mandatory but give financial actors some liberty on the choice of
credit model as well as stress test methodology.89 In order to not only
fulfil its regulatory duties but also minimize the safety cushion it needs to
maintain, a financial actor is strongly incentivised toward highly accurate
models for the purpose of stress testing. As credit decisions are usually
modelled as complex hierarchical processes involving defaults, contagions
and loss recovery; it is easy to see how conditional generative models of
the different sub-components can be useful and have a sizeable financial
impact. Given their usefulness as well as our need for estimators of the
survival, we will dedicate the rest of the chapter to a specific generative
model. While many generative models do indeed match our requirements
of easy sampling and tractable survival as well as likelihood, by virtue of
specifying parametric families of known distributions, the only require-
ment usually required is the ease of sampling. gans for example, have
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Figure 3.6: Mapping a normal
distribution to a survival distribu-
tion.

enjoyed a growing popularity for the quality of the samples they provide
for complex distributions but even accessing the likelihood is intractable.
Even the more standard models such as vaes (Kingma and Welling [2014,
2019]), are usually constrained to lower bounds of the likelihood and are
therefore unsuitable for our use. Given those prerequisites, we introduce
in the next subsection a specific recent spiritual successor of vae with the
added benefit of a tractable likelihood.

3.3.2 Normalizing Flows
Similarly to regression models such as the aft model of eq. (3.8), we can
assume that 𝑌 ∼ 𝒴 can be obtained as a transformation through some
mapping𝑚 of some latent variable 𝑍 ∈ ℤ with 𝑍 ∼ 𝒵, as represented in
fig. 3.6, such that

𝑌 = 𝑚(𝑍,𝑋). (3.9)

This view is not restrictive as, when all the variables are continuous, we
can indeed always write,

𝑌 = 𝐹−1𝑌∣𝑋=𝑥 ∘ 𝐹𝑍(𝑍),

knowing that 𝐹𝑍(𝑍) ∼ 𝒰 [0, 1] and 𝐹−1𝑌∣𝑋=𝑥(𝑈) ∼ 𝒴 when 𝑈 ∼ 𝒰[0, 1]. As
𝐹𝑌∣𝑋=𝑥 is unknown, it is natural to instead select the best candidate𝑚𝜃⋆
from some family (𝑚𝜃)𝜃, parameterized by 𝜃 ∈ Θ (usually Θ = ℝ𝑝), that
minimizes some notion of distance to the true distribution 𝒴 i.e. such that

𝑔𝜃⋆ = argmin
𝜃∈Θ
𝒟(𝜇𝒴, 𝑚𝜃(𝜇𝒵, 𝑋)), (3.10)

where𝑚𝜃(𝜇𝒵, 𝑋) denotes the push-forward measure of 𝜇𝒵 by the mapping
𝑚𝜃(⋅, 𝑋). Several distances𝒟 have been proposed in the censored setting,
such as the partial log-likelihood introduced earlier or continuous ranked
probability score (crps) (Avati et al. [2018]) for sharp estimates but we
will only consider the former.

The task of learning a generative model of 𝑌 can then be seen from a
different optic: instead of trying to learn a complex distribution we learn
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90: For example the task of mini-
mizing the Kullback–Leibler (kl)
divergence or log-likelihood
from a shifted and scaled
Weibull.
91: Of course differentiability is
not sufficient to ensure that min-
imization is possible, convexity
would normally be required, but
local minimums are in practice
considered good enough.

92: Forward mode is usually im-
plemented using dual numbers,
i.e. by operating on ℝ+ 𝜖ℝ where
𝜖2 = 0 instead of ℝ.
93: Or 𝑣⊺𝐽𝑓(𝑥).

94: Usually under the name
backpropagation.

95: Forward-over-reverse in this
case

a complex mapping of a simple distribution. We therefore need to be able
to solve eq. (3.10), which can be done if the problem, and therefore both
𝒟 and𝑚𝜃, have a particular form amenable to a simple solution90 or if
both𝒟 and𝑚𝜃 are differentiable.91

In the following sections, we will see how to construct the mapping of
eq. (3.9) such that the mapping𝑚𝜃 itself as well as the quantities involved
in eq. (3.2) are both computable and differentiable. While differentiability
alone is enough, we require in practice that the different objects involved
can be automatically differentiated, i.e. that it is possible to algorithmically
derive the exact gradient as opposed for example to finite differences. Au-
tomatic differentiation of some function 𝑓 can refer either to forward mode
automatic differentiation (ad) where the quantity being algorithmically
computed is 𝐽𝑓(𝑥)𝑣 where 𝐽𝑓(𝑥) is the jacobian of 𝑓 evaluated at 𝑥 and 𝑣
is some vector. 𝐽𝑓(𝑥)𝑣 is then simply the directional derivative and given
a set of rules to build vector-jacobian product 𝐽𝑣, it is easy to see that
the rule for 𝑓 ∘ 𝑔 can be obtained by 𝐽𝑔(𝐽𝑓(𝑥)𝑣).92 Reverse mode ad on
the other hand is equivalent to the calculation of 𝐽⊺𝑓(𝑥)𝑣,93 which results
in a reversed rule for composition i.e. 𝑣⊺𝐽𝑓∘𝑔(𝑥) = (𝑣

⊺𝐽𝑔(𝑥))𝐽𝑓(𝑥) which
algorithmically implies that the process of deriving the full vector-jacobian
product proceeds in two steps: in the forward pass, the composition is exa-
cuted and recorded, for example as a tape or graph of operations, and once
the output obtained the tape is played backward in the reverse phase in
order to compose the elementary vector-jacobian products. If𝑓∘𝑔(𝑥) ∈ ℝ
then taking 𝑣 = 1 yields 𝑣⊺𝐽𝑓∘𝑔(𝑥) = ∇(𝑓 ∘ 𝑔), which motivates the use of
reverse mode ad in machine learning94 where cheap computation of the
gradient makes gradient descent computationally viable. In practice, for a
function 𝑓 ∶ ℝ𝑝 ↦ ℝ𝑚, forward differentiation scales linearly with 𝑝, that
is has a total computation complexity of 𝑂(𝑝) while reverse mode scales
with𝑂(𝑚). As most machine learning problems involve a significant num-
ber of parameters (𝑝 large) and small numbers of outputs (usually𝑚 = 1),
reverse mode ad is the umost commonly used mode in the machine learn-
ing setting. This is however not always the case and in some instances,
such as the computation of a Hessian, mixed mode ad95 can be employed
to exploit the specific tradeoffs of the problem at hand. For an overview
of the field of automatic differentiation in general we refer to Margossian
(2019). Given the recent successes of the field of deep-learning, the desire
to replace usually simple or even fixed functions with complex neural
networks have given rise to the need to formulate problems such that the
whole end-to-end pipeline is differentiable. This new field, usually refered
to as differentiable programming or scientific machine learning (see Innes
et al. [2019]), relies on building adjoints, that is building rules for the con-
struction of the vector-jacobian product 𝑣 ↦ 𝑣⊺𝐽(𝑥) in order to enable the
use of increasingly complex or exotic “layers” inside end-to-end machine
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96: Not the solution itself, but the
program that takes the parame-
ters of the problem as input and
give the solution as output.

97: While we will not use it here,
differentiable sorting enables
differentiable computations of
the auc or C-Index, both useful
metrics in the censored setting.

98: Hence the 𝐶1-
diffeomorphism assumption.

99: Computing a determinant
can be stated in terms of matrix
multiplication and has the same
complexity. This therefore means
that the best known algorithm
has a complexity of 𝑂(𝑞2.3729)(Al-
man and Williams [2020]) but
with a hidden constant so large it
is impractical. For all intents and
purposes, the fastest algorithm
in practice is 𝑂(𝑞2.807)(Strassen
[1969]), with both lower-upper
decomposition (lu) and Bareiss
often used leading to the afore-
mentioned 𝑂(𝑞3)(Bareiss [1968]).

learning systems. Recently, methods tomake convex optimization96 differ-
entiable have been proposed (Agrawal et al. [2019]), as well as approaches
to differentiable sorting97 (Cuturi, Teboul, and Vert [2019]; Blondel et al.
[2020]), or differentiable solvers for odes, pdes, sdes (Rackauckas and
Nie [2017a]) and universal differential equation (ude) (Rackauckas, Ma,
Martensen, et al. [2020]) in general. We will, in particular, make use of
these last developments in the sections that follow.

3.3.3 The Change of Variable Theorem
We momentarily only concern ourselves with the unconditional estimation
of the density and associated survival and omit the conditioning on the
covariates𝑋. This is only for the sake of readability and one needs only to
introduce the missing conditioning in all the following relations to retrieve
the conditional case.

Assuming the existence of the mapping 𝑌 = 𝑚𝜃(𝑍) and under the
hypothesis that 𝑚𝜃 is a 𝐶1-diffeomorphism it is possible to derive the
density of 𝑌 from the density of 𝑍 by means of the change of variable
theorem

log𝑝𝑌(𝑡) = log𝑝𝑍(𝑧) − log|det
𝜕𝑚𝜃
𝜕𝑧
| . (3.11)

Equation (3.11) imposes not only the explicit constraint that 𝑚𝜃 must
be invertible98 but also that the determinant of the Jacobian is easy to
compute. Such constraints are in practice fairly difficult to meet and
impose restrictions on the parametric family (𝑚𝜃) in order to render the
problem tractable. In the general setting, computing the determinant
of an arbitrary matrix of size 𝑞 × 𝑞 has a computational cost99 of 𝑂(𝑞3).
In practice we restrict 𝑚𝜃 such that its Jacobian has a form facilitating
the computation of its determinant i.e., for example triangular or block
diagonal. It is, however, possible to retrieve the lost representational power
by simply composing multiple simple transformations such that

𝑌 = 𝑚𝜃,𝐾 ∘ … ∘ 𝑚𝜃,0(𝑍),

log𝑝𝑌(𝑡) = log𝑝𝑍(𝑧) −
𝐾

∑
𝑖=0

log|det
𝜕𝑚𝜃,𝑖
𝜕𝑧𝑖
| .

(3.12)

Since the original paper of Rezende and Mohamed (2015) most of the
research on the subject has gravitated toward constructing families of
functions𝑚𝜃 that are easily computable and whose Jacobian has a tractable
determinant i.e. diagonal, triangular, has a simple block structure or more
generally encodes an adjacency matrix (Wehenkel and Louppe [2021])
while still maintaining a high degree of flexibility. Dinh, Krueger, and
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𝑧0𝑧 = 𝑧1
𝑚𝜃,1 𝑧𝑖 𝑧𝑖+1

𝑚𝜃,𝑖+1… 𝑧𝑘… = 𝑦

𝑧0 ∼ 𝑝0(𝑧0) 𝑧𝑖 ∼ 𝑝𝑖(𝑧𝑖) 𝑧𝑘 ∼ 𝑝𝑘(𝑧𝑘)

Figure 3.7: Mapping a simple dis-
tribution to a target distribution
by successive compositions.

100: One can interpret𝑚𝜃,𝑖(𝑧𝑖)
as𝑚𝜃(𝑧𝑖, 𝑖).

Y. Bengio (2015) introduced the notion of coupling layers, that is layers that
leave part of the input untouched in order to ensure invertibility:

𝑚𝜃(𝑥)1∶𝑘 = 𝑧1∶𝑘,
𝑚𝜃(𝑥)1∶𝑘 = 𝑧𝑘+1∶𝑑 ⊙ exp(𝑠(𝑧1∶𝑘)) + 𝑡(𝑧1∶𝑘),

where 𝑠 and 𝑡 are respectively scaling and translation operations from
ℝ𝑘 ↦ ℝ𝑑−1. Not only is it possible to ensure invertibility but the resulting
Jacobian is block triangular

𝐽 = (
𝕀𝑘 𝟘𝑘
𝜕𝑦𝑘+1∶𝑑
𝜕𝑧⊺1∶𝑘

diag(exp(𝑠 (𝑧1∶𝑘)))
).

In order to be able to compose those coupling layers, Dinh, Sohl-Dickstein,
and S. Bengio (2017) subsequently proposed the use of masked convolu-
tions in order to vary the split between the untouched and transformed
part of the coupling. Similarly, Oliva et al. (2018); Papamakarios, Pavlakou,
and Murray (2018) show that autoregressive networks exhibit the same
structure as the aforementioned coupling layers and can therefore be used
as candidates in normalizing flows. Kingma and Dhariwal (2018) builds
on the previous approaches and introduce invertible 1 × 1 layers, further
improving the representational power of the individual flows.

It is, however, possible to entirely sidestep the previous problems by
defining eq. (3.12) continuously, as proposed by R. T. Q. Chen et al. (2018).
By interpreting the change of variable associated to a single composition
step as an Euler integration step from 𝑖 to 𝑖 + 1,100 we can instead adopt an
infinitesimal point of view by parametrizing the derivative of the change
of variable. It is possible to prove (see the derivation in R. T. Q. Chen et al.
[2018], Appendix A) that the change of variable theorem becomes:

{{
{{
{

𝑧𝑖+1 = 𝑚𝜃,𝑖(𝑧𝑖)
log𝑝(𝑧𝑖+1) − log𝑝(𝑧𝑖)
𝑖 + 1 − 𝑖

= − log|
𝜕𝑚𝜃,𝑖
𝜕𝑧
|
⇒
{{{
{{{
{

𝜕z𝜃
𝜕𝑡
= 𝑚𝜃(z𝜃(𝑡), 𝑡)

𝜕 log𝑝(z𝜃(𝑡))
𝜕𝑡

= − tr 𝜕𝑚𝜃
𝜕z

.
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101: Or at least not trivially
possible.
102: Considered an hyperpa-
rameter to be chosen by the
user.

We distinguish z(𝑡) the path of the flow, from 𝑧 the initial latent variable.
Here z(𝑡) is only a mathematical device used to define the transformation
of interest and is not in itself the object of interest.

The compositional process of eq. (3.12) is therefore replaced by the initial
value problem of eq. (3.13)

𝜕
𝜕𝑡
[

z𝜃(𝑡)
log𝑝(𝑦) − log𝑝(z𝜃(𝑡))

] = [

[

𝑚𝜃(z𝜃(𝑡), 𝑡)

− tr 𝜕𝑚𝜃
𝜕z
]

]

[
z𝜃(1)

log𝑝(𝑦) − log𝑝(z𝜃(1))
] = [
𝑦
0].

(3.13)

Note that the problem as written here defines the flow in the direction
𝒴 ↦ 𝒵 i.e. the mapping from 𝑌 to 𝑍. The inverse mapping 𝒵 ↦ 𝒴
is similarly defined by changing the starting point and matching initial
conditions of the problem. Note that for fixed endpoints 𝑌 and 𝑍, the
path stays the same and only the direction of the dynamics is reversed,
which is equivalent to reversing the time. We denote by z𝜃(𝑡, 𝑧1) (resp.
z𝜃(𝑡, 𝑧0)) the path solution of the particular instance of the initial value
problem (ivp) of eq. (3.13) with initial condition z𝜃(1, 𝑧1) = 𝑧1 (resp.
z𝜃(0, 𝑧0) = 𝑧0) and parametrization 𝜃 of the dynamics. By parameterizing
a normalizing flow infinitesimally we are able to overcome the two previous
limitations: not only the expensive computation𝑂(𝑛3) of the determinant
is entirely eliminated and replaced by a trace operation costing only 𝑂(𝑛)
but the restriction on invertibility is not explicitly required anymore: as
long as 𝑚𝜃 and 𝜕z𝑚𝜃 are piecewise continuous and Lipschitz over the
integration domain, then eq. (3.13) admits a unique solution (see Khalil
[2002],Theorem 3.2, p.93; or Hirsch, Smale, andDevaney [2013]), which by
construction is the mapping desired and therefore a 𝐶1-diffeomorphism
and inverting the solution only requires solving the ode backward in
time. In practice these hypotheses are met for most of the common layers
and activation functions used in deep learning (see Scaman and Virmaux
[2018]).

We note here that while𝑚𝜃 in the continuous definition of the normal-
izing flows plays a similar role to 𝑚𝜃 in the discrete version, it is in fact
not the same object and does not represent the flow explicitly but only
implicitly through the dynamics. Instead, for z𝜃(⋅, 𝑧0) solution of eq. (3.13)
with initial value z𝜃(0) = 𝑧0, we denote by𝑀𝜃 the resulting normalizing
flow such that

𝑀𝜃(𝑧) ≝ z𝜃(1, 𝑧0),
𝑀−1𝜃 (𝑧) ≝ z𝜃(0, 𝑧1).

(3.14)

It is not possible101 to ensure that the learned flow maps from ℤ to ℝ+
exactly, where ℤ is the support of the pullback distribution 𝒵.102 While,
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z(0)𝑧 = z(𝑢) z(1)
∫𝑢0 𝑚𝜃 ∫1𝑢 𝑚𝜃 = 𝑦

𝑧0 ∼ 𝑝(𝑧) z(𝑢) ∼ 𝑝(z(𝑢)) 𝑡 ∼ 𝑝(z(1))

Figure 3.8: Mapping a simple
distribution to a target distribu-
tion by continuously applying an
infinitesimal flow.

103: By seeing exp as a
layer, which is indeed a 𝐶1-
diffeomorphism.

barring any numerical inaccuracies, this is indeed true by construction
for any (𝑍𝑖,𝑀𝜃(𝑍𝑖)) part of the training sample, we cannot guarantee
that the same is true for new observations. Indeed there is no reason for
the learned mapping to map to a proper survival distribution, that is for
the pushforward measure to have support in ℝ+. In order to bypass any
discussion and entirely eliminate the problem, we instead reparametrize
the normalizing flow using a two-step process. First a learned flow maps
from ℤ to ℝ by learning

log(𝑌) = 𝑀𝜃(𝑍),

then a deterministic change of variable maps ℝ to ℝ+ through

𝑌 = exp(log(𝑌)) = exp(𝑀𝜃 (𝑍)) .

The resulting process is still a normalizing flow103 and could be reframed
as a continuous normalizing flow by deriving the corresponding dynamics.
This reparameterization ensures that𝑀𝜃(𝑍) ∈ ℝ+ is a proper time-to-
event as well as prevents any issues arising from the possibility of mapping
an event outside the support of the latent distribution. This reparameteri-
zation is commonly used in survival regression (Miller and Halpern [1982];
Buckley and James [1979]) and our model can be seen as a generalization
of the accelerated failure time model of eq. (3.8) (see Wei [1992]). For
simplicity, however, we perform the last change of variable independently
and we omit this last step from the notation in the following sections for
the sake of readability.

3.4 Unconditional Survival Normalizing Flows
The observant reader may have already noticed earlier that the principal
argument we put forward for the use of continuous normalizing flows, that
is the fact that computation of the Jacobian is trivial, is not convincing or
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even necessary in the specific case of survival analysis. Because normaliz-
ing flows have to be bijective, unlike vaes, it is necessary to preserve the
dimensions of the input and output spaces. As a consequence, flows in
our setting are from ℝ to ℝ only and the Jacobian of the flow is a degener-
ate matrix of size 1 × 1, whose determinant is not hard to compute. We
therefore adopt here the continuous approach mainly for the two other
reasons evoked earlier: the absence of restrictions on the choice of 𝑚𝜃,
which while not particularly problematic simplifies experimentations, and
more importantly the ability to compute the inverse flow mapping exactly
and for the same computational price as the mapping flow itself. This last
characteristic will prove to be particularly important in the survival setting
compared to the usual density estimation setting as we will detail here.

While the system given previously in eq. (3.13) describes how to obtain
𝑌𝑖 = 𝑀𝜃(𝑍𝑖) as well as 𝑓𝑇(𝑌𝑖) = log𝑝(𝑀𝜃(𝑍𝑖)), we also need to be able to
compute 𝑆𝑌(𝑌𝑖) in order to entirely define the loss, chosen here to be the
partial likelihood of eq. (3.2). We exploit the relation between 𝑌 and 𝑍
and note that,

𝑆𝑌(𝑌𝑖) = ∫
ℝ+
𝟙𝑡≥𝑌𝑖 𝜇𝒴 (d𝑡) = ∫

ℝ+
𝟙𝑀𝜃(𝑧)≥𝑌𝑖 𝑀𝜃 (𝜇𝒴 (d𝑧))

= ∫
ℤ
𝟙𝑧≥𝑀−1𝜃 (𝑌𝑖) 𝜇𝒴 (d𝑧)

= 𝑆𝑍 (𝑀−1𝜃 (𝑌𝑖)) , (3.15)

where the penultimate equality is not trivial but can be obtained by taking
the derivative of𝑀𝜃(𝑧) = 𝑧(1, 𝑧, 𝜃)with respect to 𝑧which yields, provided
𝑚𝜃 is sufficiently smooth, an adjoint initial value problemwhose dynamical
system is loosely decoupled, with adjoint state

d
d𝑧
𝑀𝜃(𝑧) = exp(∫

1

0
− 𝜕
𝜕𝑧
𝑚𝜃 (z𝜃(𝑡, 𝑧), 𝑡) d𝑡) > 0.

We do not solve the adjoint system and only use the fact that it is positive in
order to determine the sense of the inequality. From eq. (3.15), we see that
computing the survival function on the unknown distribution 𝒴 can be re-
framed as computing the survival of the preimage on the, supposed entirely
known, pullback distribution 𝒵. By construction, computing𝑀−1𝜃 (𝑌𝑖) is
of the same complexity as computing𝑀𝜃(𝑍𝑖) and only requires solving
the system backward in time. Now that we have shown the quantities to
be computable, we explain how to efficiently obtain the gradient of these
quantities.
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104: And a constant increase in
practice.

3.4.1 Parameter Estimation
We recall that wewish to find 𝜃, solution of the empirical riskminimization
problem of eq. (3.2). As the use of computationally expensive neural
networks constrains our choice of optimization techniques to first order
descent methods only, we only need to be able to differentiate𝑀𝜃, solution
of the ivp of eq. (3.13).

As all the quantities involved are differentiable, we only need to be
able to compute the sensitivity 𝜕𝜃𝑀𝜃(𝑍) of the solution of the ode itself
with respect to its parameters, usually referred to in the ode literature as
local sensitivity analysis (as opposed to global sensitivity analysis which
concerns itself with the study of the range of solutions given the whole
feasible domain of inputs and parameters). By rewriting𝑀𝜃(𝑍) as

𝑀𝜃(𝑍) = z𝜃(1, 𝜃)

= ∫
𝑇

𝑡0
z𝜃(𝑡, 𝜃)

⊺ [01] 𝛿1(𝑡) d𝑡,

the loss of eq. (3.2), given a solution u of the ivp of eq. (3.13) (with u =
[z𝜃, Δ log𝑝(z𝜃)]), can be written as

𝐿(u, 𝜃) = ∫
𝑇

𝑡0
𝑙(u(𝑡, 𝜃), 𝜃) d𝑡. (3.16)

We can then form the adjoint state

𝜕𝜆
𝜕𝑡
= 𝜕𝑙
𝜕𝑢
(u(𝑡, 𝜃), 𝜃) − 𝜆(𝑡)𝜕𝑝

𝜕𝑢
(𝑡, u(𝑡, 𝜃), 𝜃),

𝜆(𝑇) = 0,

such that

𝜕𝐿
𝜕𝜃
= ∫
𝑇

𝑡0
𝜆(𝑡)𝜕𝑝
𝜕𝜃
(u(𝑡, 𝜃), 𝜃) + 𝜕𝑙

𝜕𝜃
(u(𝑡, 𝜃), 𝜃) d𝑡 + 𝜆(𝑡0)

𝜕u
𝜕𝜃
(𝑡0, 𝜃).

This adjoint method (see Cao et al. [2003]) doesn’t require any additional
machinery (other than a𝑂(1) increase in computations) in order to obtain
the derivative and the solution itself, we only need to solve the original ivp
with the addition of the new adjoint state, resulting in the same asymptotic
computational complexity.104

Using the adjoint method, we are therefore able to differentiate𝑀𝜃 =
z𝜃(1, ⋅) as well as𝑀−1𝜃 = z𝜃(0, ⋅) with respect to 𝜃. We refer to Rackauckas,
Ma, Dixit, et al. (2018) for a more complete overview of the various possi-
bilities for automatic differentiation of a solution of a differential equation
as well as Innes et al. (2019) for the perspectives offered.
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3.5 Conditional Survival Normalizing Flows
In the previous sections, we omitted the conditioning on the covariates𝑋 ∈
𝕏 in order to simplify the notations. Wenow reintroduce this conditioning,
as its presence does not modify any of the previous results, and show how
to efficiently build a mapping𝑀𝜃 ∶ 𝒵 ↦ 𝒴 ∣ 𝑋 such that

𝑌 = 𝑀𝜃(𝑍,𝑋).

As the trace operator is linear, it is possible to efficiently extend the ex-
pressivity of a single normalizing flow at a minor computational cost by
representing it as a linear combination of 𝐾 basis functions i.e.

𝑚𝜃(z𝜃(𝑡, 𝑥), 𝑡, 𝑥) =
𝐾

∑
𝑖=1
𝑚𝜃,𝑖(z𝜃(𝑡, 𝑥), 𝑡, 𝑥).

As in R. T.Q. Chen et al. (2018), we choose to parametrize each basis
function𝑚𝜃,𝑖 as a mixture of unconditional and time-invariant dynamics.
We choose to decouple the gating in 𝑥 and 𝑡 in order to prevent overfitting
and be able to apply different regularizations and computational budget.
Decoupling the blocks in 𝑥, 𝑡 and 𝑧 also gives us the ability to exploit the
structure of the problem in order to implement efficient batching for use
on graphical processing units (gpus).

𝑚𝜃(z𝜃(𝑡, 𝑥), 𝑡, 𝑥) = ∑
𝑖
𝜋𝜃,𝑖(𝑥)𝜎𝜃,𝑖(𝑡)𝑚𝜃,𝑖(z𝜃(𝑡, 𝑥)).

The full dynamics of our continuous normalizing flow are therefore,

𝜕
𝜕𝑡
z𝜃(𝑡, 𝑥) = ∑

𝑖
𝜋𝜃,𝑖(𝑥)𝜎𝜃,𝑖(𝑡)𝑚𝜃,𝑖(z𝜃(𝑡, 𝑥)),

𝜕
𝜕𝑡

log𝑝(z𝜃(𝑡) ∣ 𝑥) = −∑
𝑖
𝜋𝜃,𝑖(𝑥)𝜎𝜃,𝑖(𝑡) tr

𝜕𝑚𝜃,𝑖
𝜕z
|
z𝜃(𝑡,𝑥)
.

(3.17)

3.5.1 Hierarchical Conditioning
Conditional density estimators learned by maximizing the likelihood are
well known to be prone to overfitting. We control the amount of overfitting
by introducing an auxiliary latent representation shared by all the condi-
tional distributions 𝑌 ∣ 𝑋. We therefore impose the shared hierarchical
representation 𝑤 = 𝐻𝜃(𝑧) such that 𝑦 = 𝑀𝜃(𝑤, 𝑥) = 𝑀𝜃(𝐻𝜃(𝑧), 𝑥) with
𝐻𝜃(𝑍) ⟂⟂ 𝑋. The corresponding flow dynamics can be rewritten as

𝜕z𝜃
𝜕𝑡
(𝑡, 𝑥) =

𝐾

∑
𝑖=1
(𝟙𝑡≤𝑡𝑥 + 𝜋𝜃,𝑖(𝑥)𝟙𝑡>𝑡𝑥) 𝜎𝜃,𝑖(𝑡)𝑚𝜃,𝑖(z𝜃(𝑡, 𝑥)), (3.18)
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z𝜃(0)𝑧 = z𝜃(𝑡𝑥) z𝜃(1, 𝑥) = 𝑦

𝑧 ∼ 𝑝(z(0)) ℎ ∼ 𝑝(z𝜃(𝑡𝑥)) 𝑡 ∼ 𝑝(z𝜃(1, 𝑥))

ℒ𝑢 ℒ𝑐 + 𝜆ℒ𝑢

Unconditional Figure 3.9: Hierarchical Survival
Flow with Multiple Losses.

where 𝑡𝑥 controls implicitly the allowed deviation from the unconditional
distribution. If we denote by𝑝𝐻𝜃(𝑧) the unconditional distribution induced
by𝐻𝜃(𝑧) and 𝑝𝑚𝜃(𝐻𝜃(𝑧),𝑥) the distribution induced by 𝑝𝑚𝜃(𝐻𝜃(𝑧),𝑥), we can
regularize the intermediate shared latent representation toward the true
unconditional survival distribution by augmenting the loss eq. (3.2) with
an intermediary loss ℒu such that

ℒtotal(𝜃) = ℒu(𝜃) + ℒc(𝜃) (3.19)

= ∑
𝑖
𝛿𝑖 log(𝑝𝐻𝜃(𝑍𝑖)(𝑇𝑖)) + (1 − 𝛿𝑖) log(𝑆𝐻𝜃(𝑍𝑖)(𝑇𝑖))

+ 𝜆∑
𝑖
𝛿𝑖 log(𝑚𝜃(𝐻𝜃(𝑍𝑖), 𝑋𝑖)(𝑇𝑖))

+ (1 − 𝛿𝑖) log(𝑆𝑚𝜃(𝐻𝜃(𝑍𝑖),𝑋𝑖)(𝑇𝑖)),

(3.20)

where 𝑆𝐻𝜃(𝑥) and 𝑆𝑚𝜃(𝐻𝜃(𝑧),𝑥) are the respective survival functions of the
distributions defined by the densities 𝑝𝐻𝜃(𝑧) and 𝑝𝑚𝜃(𝐻𝜃(𝑧),𝑥).

3.5.2 Discrete & Continuous Hierarchical Conditioning
For datasets with particularly complex dependences on the covariates, it
is possible to add other layers of hierarchies. The simplest scheme consists
of using discrete hierarchical transformations: let 𝐻 be the number of
hierarchies then we can learn 𝐾 ×𝐻mixtures such that

𝑚𝜃(z𝜃(𝑡, 𝑥), 𝑡, 𝑥) =
𝐾

∑
ℎ=1
𝟙𝑡ℎ−1<𝑡≤𝑡ℎ

𝐾

∑
𝑖=1
𝜋𝜃,𝑖,ℎ(𝑥)𝜎𝜃,𝑖,ℎ(𝑡)𝑚𝜃,𝑖,ℎ(z𝜃(𝑡, 𝑥)). (3.21)
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We call this scheme discrete hierarchical conditioning. In the same man-
ner as done in the previous section, it is possible if desired to introduce
intermediary losses in order to prevent overfitting as well as help with the
training procedure. As our model is continuous, we do not have to con-
strain ourselves to hard gating at time steps (𝑡ℎ), effectively reducing our
model to a standard normalizing flow using continuous normalizing flow
layers. Instead we can continuously interpolate between representations:

𝑚𝜃(z𝜃(𝑡, 𝑥), 𝑡, 𝑥) =
𝐻

∑
ℎ=1

exp(𝑐ℎ|𝑡 − 𝑡ℎ|2)
𝐾

∑
𝑖=1
𝜋𝜃,𝑖,ℎ(𝑥)𝜎𝜃,𝑖,ℎ(𝑡)𝑚𝜃,𝑖,ℎ (z𝜃 (𝑡, 𝑥)) . (3.22)

We call this scheme continuous hierarchical conditioning. By making 𝑐ℎ
and 𝑡ℎ learnable parameters, we make it possible for the model to learn if
hierarchies are needed or can potentially be discarded.

The hierarchical approach as introduced previously may at first appears
strictly identical to the non-hierarchical approach as it is possible to in-
corporate 𝟙𝑡ℎ−1<𝑡≤𝑡ℎ directly inside 𝜎, there is, however, one significant
advantage: by knowing the relative order (in the sense of 𝑡) in which the
mixtures are applied we can design𝑚𝜃,𝑖,ℎ to be of increasing complexity in
order to impose a shared representation between the different individuals.

3.6 Experiments
All the material, including code and data, necessary for the reproduction
of the results presented here is available at g i t . s r . h t / ~ a u s s e t g / n f s u r v i v a l .
The experiments have been implemented in the Julia language (Bezanson
et al. [2017]). where we make heavy use of the D i f f e r e n t i a l E q u a t i o n s . j l

(Rackauckas and Nie [2017b]) and Z y g o t e . j l (Innes et al. [2019]) libraries
in order to implement automatic differentiation of the initial value prob-
lems involved. The normalizing flow approach is directly compared to
existing methods for survival analysis on synthetic data designed to model
violations of the proportional hazards hypothesis as well as multimodality.
We compare our approach to the existing literature on standard open med-
ical datasets and motivate the need for generative models that are easy to
sample from by applying our method to a commonly encountered setting
in the financial community later in chapter 5.

3.6.1 Synthetic Data
In order to test the ability to both capture complex interactions between
covariates as well as model a potentially multimodal distribution which

git.sr.ht/~aussetg/nfsurvival
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Figure 3.10: Different Synthetic
Distributions for 𝑑 = 10

violates the proportional hazard assumption, we generate synthetic data
according to the following model:

𝑋 ∼ 𝒰𝑑
𝑌 ∼ 𝑝𝑊(𝛽⊺1𝑋, 𝛽

⊺
2𝑋) + 0.7𝑊(2𝛽

⊺
3𝑋, 𝛽
⊺
4𝑋)

𝐶 ∼ 𝑊(𝛽⊺5𝑋, 𝛽
⊺
6𝑋)

𝑇 = min(𝑌, 𝐶)
𝛿 = 𝟙𝑌≤𝐶,

with some resulting distributions represented in §3.6.1. While often implic-
itly discarded by themodel chosen, the possibility for the event distribution
to be multimodal is far from exotic: many diseases, such as acute radiation
poisoning, include a latent period of relative well-being of the patients;
death occurring before or after the latent period but not during. Similarly,
in a financial setting it is expected to observe modes around important
fiscal events as those are the periods around which one expects a company
to default. The different models are trained on a test set of 3000 obser-
vations (chosen to match the characteristics of the real datasets) with an
average of 80% of censoring. We then estimate the Harrel’s concordance
index (Harrell, Califf, et al. [1982]; Harrell, K. L. Lee, and Mark [1996])

ℙ𝑌 (𝑠(𝑋𝑖) ≥ 𝑠(𝑋𝑗) ∣ 𝑌𝑖 ≤ 𝑌𝑗) , (3.23)

where 𝑠(𝑋𝑖) is a scoring function defined later and (𝑋𝑖, 𝑌𝑖) and (𝑋𝑗, 𝑌𝑗) are
identically distributed. The concordance index has been widely used in
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the survival setting as it can be corrected to account for censoring and only
concerns itself with the global ranking capabilities of the model instead
of the accuracy of the predictions. While incomplete and criticizable,
the concordance metric represents one important aspect of the model for
practitioners: how accurate are the relative risks (seeUno et al. [2011]). This
is particularly important in the medical or financial setting where whether
to select (for treatment or for financing) an individual over another is the
useful actionable insight.

While proportional hazard methods possess a natural notion of risk
score, needed to compute the concordance index, this is not the case for
our method or survival forests. In the random survival forest setting
(Ishwaran, Kogalur, et al. [2008]) the authors construct the risk score as

𝑠(𝑋𝑖) =
𝑚

∑
𝑖=1
�̂�𝑖(𝑡𝑖 ∣ 𝑋𝑖), (3.24)

where (𝑡𝑖)𝑖=1,…,𝑚 are the unique event times in the training set. While
a similar approach can be used for our model, we instead exploit the
fact that we can easily and cheaply generate conditional observations to
directly learn the ranking implied by the concordance. Given a test dataset
(𝑇𝑖, 𝛿𝑖, 𝑋𝑖)𝑖=1,…,𝑛 we first generate 𝑛 × 𝑚 observations 𝑌𝑖,𝑘 = 𝐺𝜃(𝑍𝑘, 𝑋𝑖)
with 𝑍𝑘 ∼ 𝒵 i.i.d. and define the score vector s = [𝑠(𝑋1),…, 𝑠(𝑋𝑛)] as

𝑠(𝑋𝑖) =
1
𝑚
∑
𝑗
∑
𝑘
𝟙𝑌𝑖,𝑘>𝑌𝑗,𝑘 . (3.25)

The competing approaches have been trained using the P y S u r v i v a l (Stephane
[2019]) library and their concordance computed using the scoring function
from the same package. The results are presented in table 3.1.

Method Concordance

This work 0.795691
DeepSurv (Katzman et al. [2018]) 0.762831
Random Survival Forest (Ishwaran, Kogalur, et al. [2008]) 0.705942
Cox PH 0.666684

Table 3.1: Concordance achieved
on synthetic datasets.

3.6.2 Real Data
We evaluate our approach compared to the state of the art on several
open healthcare-related datasets. The four medical datasets considered
are the Worcester Heart Attack Study (WHAS Hosmer, Lemeshow, and
May [2000]), the Study to Understand Prognosis’s Preferences Outcomes
and Risks of Treatment (SUPPORT Knaus et al. [1995]), The Molecular



3 Flexible Generative Survival Models 131

Dataset 𝔼[𝛿] 𝑑 𝑛train 𝑛test
Metabric 0.579307 9 1523 381
RGBSG 0.567652 7 1546 686
Support 0.680266 14 7098 1775
WHAS 0.421245 6 1310 328

Table 3.2: Descriptive statistics
of the real datasets used in this
work.

105: We are only interested in
the generalization error, not the
approximation error.

Taxonomy of Breast Cancer International Consortium (METABRICCurtis
et al. [2012]) as well as the Rotterdam & German Breast Cancer Study
Group (RGBSG Foekens et al. [2000]; Schumacher et al. [1994]). The
characteristics of the different datasets are summarized in table 3.2

The networks parameterizing 𝜎𝜃, 𝜋𝜃, 𝑓𝜃 are chosen to be simple feed
forward neural networks, but as 𝜋𝜃 is time independent, a more expressive
network could be chosen such as a transformer network (Vaswani et al.
[2017]) with a dense last layer if the covariates include unstructured text.
Solving the neural differential equation involves repeated evaluation of the
functional defining the dynamics; while solvers such as T s i t 5 (Tsitouras
[2011]) and B S 5 (Bogacki and Shampine [1989]) are adaptive and only re-
quire a limited number of evaluations depending on the stiffness of the
problem, we still keep the computational complexity of the time compo-
nents manageable in order to keep training times low. As the accuracy
of the solution is not of the utmost importance in our application,105 we
found it possible to use low accuracy solvers with high tolerances without
any loss of predictive performance.

The parameters used for the survival normalizing flows are summarized
in §3.6.2 (with𝐿 the number of layers and 𝑆 their size), while the parameters
and results from the other techniques are taken as-is from their respective
papers. The activation function used is S E L U (Klambauer et al. [2017]) for
all datasets and we use the identity function as a last layer for the covariate
networks 𝜋 and the softmax function for the 𝜎 and 𝜃. The performance

Dataset 𝑆𝜋 𝑆𝜎 𝑆𝑔 𝐿𝜋 𝐿𝜎 𝐿𝑔 K

Support 4 4 12 3 3 3 16
WHAS 12 8 12 4 4 3 32
RGBSG 4 4 12 3 3 3 16
Metabric 4 4 12 3 4 4 32

Table 3.3: Hyperparameters
selected for the survival flows
used in table 3.4.

of the different methods on the four datasets is summarized in table 3.4.
We see that Normalizing Flows outperform the state-of-the-art on 2 of
the 4 datasets and only underperform compared to random forests on the
WHASdataset. Such a result is not surprising: the covariates include highly
engineered binary variables that were strongly suspected to be indicators of
future heart problems by the instigators, it is therefore expected (provided
that their hypothesis was correct) that a space partitioning algorithm
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Concordance

Method Support WHAS RGBSG Metabric

This work 0.61678 0.86059 0.68464 0.64879
DeepSurv (Katzman et al. [2018]) 0.61831 0.86262 0.66840 0.64337
RSF (Ishwaran, Kogalur, et al. [2008]) 0.61302 0.89362 0.65119 0.62433
Cox PH 0.58287 0.81762 0.65775 0.63062

Table 3.4: Concordance of sur-
vival flows compared to com-
peting techniques achieved on
multiple real datasets.

106: Both 𝑘-nn and kernel type
estimators needs to be “retrained”
for every new observation. Not
only that but inference cost scales
with the size of the training set, a
significant downside.

107: Elapsed real time.

108: For some definition of
important, such as explainability
of the variance in the case of pca.

would perform close to optimally.

3.7 Conclusion
We have shown how to build highly flexible generative models of the
survival based on continuous normalizing flows and demonstrated that
they are able to outperform state-of-the art techniques in exchange of a
potentially sizeable increase in computational complexity. Nevertheless,
the performance gain on the examples presented can justify in many cases
the increased complexity since the majority of the computational power is
used during the training phase and then amortized during inference, which
is not the case for example in the case of 𝑘-nn or kernel estimators.106 We
will also show in chapter 5, using a toy example designed to resemble a real-
world problem commonly faced in finance, that the ability to efficiently
sample from the learned distribution can be incredibly valuable and more
than offset the computational cost incurred during the learning phase.
While the training wall time107 of our model can probably be significantly
improved by carefully optimizing the code up to the standard of themature
competing libraries, we still believe thatmore research is necessary in order
to achieve the best possible performance. It is known in the regression
setting that augmenting the ode (Dupont, Doucet, and Teh [2019]) leads
to significantly improved predictive as well as computational performance,
but those results cannot be directly applied to the normalizing flow setting.
Similarly, methods that try to control the stiffness of the ode such as Finlay
et al. (2020) have shown great promises.

Additionally, a more direct and potentially simpler way of reducing
the computational complexity is simply to reduce the complexity of the
conditioning, and therefore the size of the neural networks involved in
the parametrization of the flow. Variable selection, is a simple method
for reducing the number of dimensions of the covariates that can benefit
most models and is particularly appealing when the number of covariates
is overwhelming as can be the case with financial or genetic datasets.
However, variable selection is usually treated as a separate problem from
the downstream task of prediction and therefore may select dimensions
that are important in general108 but useless for the task of prediction and
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in our specific case, censored prediction. In the next chapter we will
therefore show, amongst other things, how to select variables that are
useful for prediction in the survival setting by means of estimating the
gradient of the regression function and only selection the dimensions
with a non-zero gradient under the assumption that useful variables are
variables that impact the output i.e. the regression function.



110: We define big data as tech-
niques to process data too volu-
minous to fit on a single machine.
Contrary to popular corpo-
rate belief this is far more data
than any Excel sheet can hold.
A single modern server can
hold several terabytes of data in
volatile memory and hundred of
terabytes of data on disk.

Figure 4.1: The IBM 305 RAMAC
introduced in 1956 and weighing
1 Ton could hold 5MB for the
monthly price of $30.000.

111: This is in this case largely the
scheme followed in the proofs
of chapter 2 where we build
neighbourhoods defined by the
metric induced by the kernel,
𝑘-nn or tree.

Prediction in High Dimension 4
4.1 Introduction
Advances in computing power as well as storage capacity have led to
an exponential increase in the quantity of data generated and captured
each year. It is not surprising that in this fertile environment, machine
learning and big data110 have developed rapidly as important fields pushing
organizations to accumulate as much data as possible, be it every text
reports on a company in the banking environment, all the electronic
recordings of the various monitoring instruments in the medical setting
or more generally all the data one can hope to acquire.

4.1.1 The Curse of Dimensionality
While this volume of data has largely been useful and responsible for the
surge of new applications of machine learning; practitioners have quickly
found that while many observations is always a good thing, observations of
many characteristics are not necessarily. It is not rare that addingmore data
about individual observations not only do not improve the quality of the
models as expected, but worse can result inworse predictions. This curious,
at first glance, phenomenon is not new to theorists and researchers ofmany
fields. First coined as the curse of dimensionality by Richard E. Bellman
in the setting of dynamic programming (Bellman [1954]), refer to the
seemingly inescapable negative influence of too many covariates when at
the same time the necessity to addmore data seems inevitable. In chapter 2,
the main results given expose their exposure to the curse of dimensionality
through the dependence of the bounds Proposition 2.8 and Theorem 2.9
on 𝑑 the dimension of 𝕏. While mostly a simplification, it is possible
to understand why the highly dimensional setting is hard by visualizing
the size of the neighbourhoods for 𝑑 large.111 As 𝑑 grows, the volume of
unit balls grows exponentially and consequently the proportion of the
space needed to encompass a certain percentage of the observations grows
quickly. Intuitively, as the dimension grows the density of neighbourhoods
decrease and as those become depleted it becomes necessary to use larger
neighbourhoods to compensate. Similarly, while not explicitly written

134
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112: Otherwise dimensionality
reduction is easy: just drop
random covariates.

113: Some people prefer the term
self-supervised, to make clear that
the covariates also play the role of
the target variable.

down, the performance of the normalizing flow methods of chapter 3
depend greatly on the number of covariates, not only from an estimation
point of view because of the risk of overfitting but more problematic, in
this case, for purely computational reasons. Given those observations, it is
clear that the ability to reduce the effective dimension of the input space
intelligently is a worthwhile endeavour.

Figure 4.2: A neighbourhood
representing ¼ of the space for
dimensions 1, 2 and 3.

4.1.2 Reduction of Dimension
The goal of dimensionality reduction is the find a new space with fewer
dimensions than the original space but the same amount of information.112
Given this fairly vague definition it is not surprising that it is possible to
derive many different techniques to achieve this goal, depending on the
definitions of new space and information one decides to adopt. Given that
our goal is not specifically to study the vast field of dimension reduction
but only one specific example adapted to survival analysis, we take the
liberty of very roughly dividing those techniques in two large families:
supervised and unsupervised dimension reduction.

Unsupervised 113 dimension reduction will refer here to methods that try
to find new smaller representations of𝕏 independently of any other poten-
tial downstream tasks. The most famous representant of this family being
the time honored pca of Pearson (1901) which can be seen either as a lossy
reconstruction method where one try to find the projection of dimension
𝑘 that minimizes the square reconstruction error, or from a probailistic
point of view where, after some hypothesis on the underlying graphical
model, one try to minimize the information loss, that is maximize the
mutual information between the full data and the reduced dimension data.
The first approach can then be extended naturally to handle sparsity (Zou,
Hastie, and Tibshirani [2006]) or even non-linearities (Lu, Plataniotis, and
Venetsanopoulos [2011]; Hastie and Stuetzle [1989]; Schölkopf, Smola, and
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114: Or embeddings in the deep-
learning litterature.

115: Which often are full sub-
spaces or projections of the input
space.

116: Seen here from a proba-
bilistic loss as a lower bound
of the evidence, or evidence
lower bound (elbo). vae are
intimately linked to the notion of
normalizing flow (nf) presented
in chapter 3.
117: The recent successes in nlp
can largely be credited to the suc-
cess of representation learning,
Mikolov et al. (2013); Pennington,
Socher, and Manning (2014), see.

118: Not to be confused with
latent dirichlet allocation.
119: When the target is a classifi-
cation variable.

K.-R. Müller [1998]; Gorban et al. [2008]) while the second view has been
extended to give the proper probabilistic principal component analysis
(ppca) (Tipping and Bishop [1999]). More generally most methods try
to preserve some intrinsic notion of the geometry of the data: multidi-
mensional scaling methods (M.A. A. Cox and T. F. Cox [2008]) strive to
preserve dissimilarities between observations, locally linear embedding
(lle) (Roweis and Saul [2000]) attempts to preserve the local geometry
while stochastic neighbor embedding (sne) and uniform manifold ap-
proximation and projection for dimension reduction (umap) (McInnes,
Healy, and Melville [2020]; Hinton and Roweis [2003]) trie to perserve the
neighbourhoods of the global space in the lower dimensional embedding.
More recently, approaches based on extracting the rich representations
from deep neural networks have enjoyed great successes by profitting from
the rapid advances of the field. While the end result of those approaches
is in many way similar: obtaining lower dimensional representations114
that retain most of the information about the original dataset, the fact that
those representations are highly processed compared the fairly mild usual
dimensionality reduction techniques115 and are specific to each dataset
and learned end-to-end, have resulted in those techniques forming their
own subfield under the taxonomy of representation learning (Y. Bengio,
Courville, and Vincent [2014]). vae (Kingma and Welling [2014, 2019]),
the main well principled representant of this field adopts the ideas of
the previously given examples, that is minimizing some reconstruction
loss116 in order to learn a domain specific mapping resulting in a good
lower dimensional embedding of the input space. While these increasingly
complex approaches to building representations have proven incredibly
successful,117 simpler methods such as random projections (Johnson, Lin-
denstrauss, and Schechtman [1986]) and more recently random fourier
features (Rahimi and Recht [2008]) are still competitive and worthwhile
tools in the dimension reduction toolbet of every practitioner.

Supervised dimension reduction on the other hand makes use of auxil-
iary data in order to guide the reduction, usually by taking into account the
downstream task i.e. the target variable𝑌 in the case of regression. The gen-
eral framework is mostly similar to the unsupervised case: trying to find a
low dimension representation that retains most of the useful information.
However, while in the unsupervised setting the notion of information has
to be defined a-prori and can be seen as information about itself, in the su-
pervised setting it is possible to define it more straighforwardly and ad-hoc
as in this case information refers directly to information useful to the task
at hand. As such, while pca tried to find some linear transformation that
maximized variance, its supervised complement, lda118 (Fisher [1936])
tries to find a linear mapping that maximally separate classes,119 therefore
making use of the target as guide. Similarly to pca, lda has been extended
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120: Usually the penultimate
layer of a deep network.

to non-linearities (Baudat and Anouar [2000]). Previously we have given
the example of multiple techniques which strived to preserve neighbour-
hoods in the new lower dimensional space, by analogy the same techniques
can be applied in order to preserve class neighbourhood (Salakhutdinov and
Hinton [2007]), in order to exploit the class information. Analoguously to
representation learning, feature learning, has proven popular in the field
of deep-learning where intermediary outputs120 are taken as meaningful
task specific representations of the covariates. Another possible approach,
and the one we will take in this chapter, is to consider the gradient of the
regression function or loss of interest with respect to the covariates as a
measure of feature importance. If the task of interest can be expressed as a
regression𝔼[(𝑌−𝑓(𝑋))2] then ∇𝑓(𝑥) represents the contribution of each
specific dimension to the result. It seems therefore natural to consider
the directions with nearly zero directional derivatives to be irrelevant and
discard them. Note that in this case the definition of variable or direction
of importance is then local at a neighbourhood of 𝑥. While it is possible to
obtain a global view by averaging over all the possible 𝑥 for example, it can
be more beneficial to use the locality in our favor. We will give examples of
this specific fact later in §4.5. Because the function𝑓 itself is unknown, the
gradient too usually has no hope of being knowable and therefore has to be
estimated in order to compute some variable importance metric based on
the gradient. As the empirical gradients retrieved have no reasons to have
any zero dimensions, Y. Kim and J. Kim (2004); Ye and Xie (2012) propose
sparse formulations based on the lasso. Sheth and Fusi (2019) on the
other hand propose a relaxation method to deal with large gradient learn-
ing problems. Those methods however are mainly concerned with the
solvability of the gradient learning problem from a computational point of
view and not with the quality of the estimate as well as the generalization
error of the final task. L. Yang et al. (2017) do give asymptotic results when
the underlying model is assumed to be partially linear but as in chapter 2
we do not wish to make any assumptions on the form of the true 𝑓 and
would like to obtain non asymptotic results.

As the empirical gradient is a useful proxy for variable importance as
well as a useful object in its own right, we will study in this chapter the
problem of empirical gradient estimation, and try to give results similar
as those of chapter 2, that is non-parametric and nonasymptotic learning
bounds for the underlying learning problem. We will show how the result-
ing gradient estimate can be used for variable selection and adapted to the
survival setting, as well as for other tasks involving the gradient.
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4.2 Empirical Gradient Estimation

About this Section
The rest of this chapter is in large part reproduced from the paper
“Nearest neighbour based estimates of gradients: Sharp nonasymp-
totic bounds and applications” with Stéphan Clémençon and François
Portier published in the proceedings of AIStats’21.

Guillaume Ausset, Stéphan Clémençon, and François Portier (2021b).
“Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymp-
totic Bounds and Applications”. In: Proceedings of the 24th Inter-
national Conference on Artificial Intelligence and Statistics. Ed. by
Arindam Banerjee and Kenji Fukumizu. Vol. 130. Proceedings of
Machine Learning Research. PMLR, pp. 532–540

In this section, we place ourselves in the same regression setup as intro-
duced and studied in chapter 2 but without any censoring. Here and
throughout the rest of the chapter, (𝑋, 𝑌) is a pair of random variables
defined on the same probability space (𝜔,ℱ, ℙ) with unknown probability
distribution ℙ. The random variable 𝑌 is real valued and supposed square
integrable, whereas the supposedly continuous random vector𝑋 takes its
values in ℝ𝑑, with 𝑑 ≥ 1, and models some information a priori useful to
predict 𝑌. Based on a sample𝒟𝑛 of 𝑛 ≥ 1 independent copies of the pair
(𝑋, 𝑌), i.e.

𝒟𝑛 = {(𝑋1, 𝑌1),…, (𝑋𝑛, 𝑌𝑛)} ,

the goal pursued is to build a Borelian mapping 𝑓 ∶ ℝ𝑑 → ℝ that pro-
duces, on average, a good prediction 𝑓(𝑋) of 𝑌. Measuring classically its
accuracy by the squared error, the learning task then boils down to finding
a predictive function 𝑓 that is solution of the risk minimization problem
min𝑓ℛ(𝑓), where

ℛ(𝑓) = 𝔼 [(𝑌 − 𝑓(𝑋))2] . (4.1)

Of course, as discussed at length in chapter 2, the true minimum which
is attained by the regression function 𝑟(𝑋) = 𝔼[𝑌 ∣ 𝑋] is unknown
as is the conditional distribution of 𝑌 given 𝑋 and the population risk
eq. (4.1). Following the erm strategy of chapter 2, which consists in solving
the optimization problem above, but with the unknown distribution ℙ
replaced by an empirical estimate ℙ𝑛 based on the training data𝒟𝑛, such
as for example the raw empirical distribution

ℙ𝑛 =
1
𝑛
∑
𝑖≤𝑛
𝛿𝑋𝑖 ,
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121: Single index because here
of dimension 1. Extensions to
the multi index setting i.e. for
dimensions of the subspace more
than 1 also exist.

where 𝛿𝑥 is the the Dirac distribution at some point 𝑥. The resulting erm
problem is then minimized on some restricted classℱ supposed to be rich
enough to include a reasonable approximant of 𝑓 but not too complex (e.g.
of finite vc dimension) in order to control the fluctuations of the deviations
between the empirical and true distributions uniformly over it. As shown
in §2.1, under the assumption that the randomvariables𝑌 and𝑓(𝑋) for𝑓 ∈
ℱ have sub-Gaussian tails, the analysis of the performance of empirical risk
minimizers (i.e. predictive functions obtained by least-squares regression)
can be controlled and provides nonasymptotic and nonparametric bounds
on the error. For a better view of the erm perspective and what type of
generalization bounds we encourage the reader to go back to §2.1 for the
uncensored case and §2.2 for the censored setting.

In this section, we are interested in estimating accurately the supposedly
well-defined gradient ∇𝑟(𝑥) by means of the popular 𝑘-nn approach (see
e.g. Devroye, Györfi, and Lugosi [1996], chapter 11; or Biau and Devroye
[2015]). The gradient learning issue has received increasing attention in
the context of local learning problems such as classification or regression
these last few years (see e.g. Mukherjee and Wu [2006]; Mukherjee and
D.-X. Zhou [2006]). Because it provides a valuable information about
the local structure of a dataset in a high-dimensional space, an accurate
estimator of the gradient of a predictive function can be used for various
purposes such as dimensionality reduction or variable selection, the partial
derivative with respect to a given variable being a natural indicator of its
importance regarding prediction. In Hristache, Juditsky, and Spokoiny
(1998), the authors study the single index regression model, that is assume
that the useful explanatory data is contained in a 1-dimensional subspace
obtained by projection of the space𝕏, that is

𝑌𝑖 = 𝑔(𝑇𝑋𝑖) + 𝜀𝑖,

where 𝑔 ∶ ℝ ↦ ℝ is called the link function and the space spanned by
𝑣 ↦ 𝑇𝑣 is called the edr space.121 They extend this setting in Hristache,
Juditsky, Polzehl, et al. (2001) to the multi-index setting, that is the same
setting but with 𝑔 ∶ ℝ𝑘 ↦ ℝ and therefore 𝑇 an orthonormal projection
of rank 𝑘. In this specific setting, one can straighforwardly prove that the
gradient ∇𝑓 of the true regression function 𝑓 belongs to the index space
at every point𝑋𝑖. The authors therefore propose to estimate the matrix

𝕄 = 1
𝑛

𝑛

∑
𝑖=1
∇𝑓(𝑋𝑖)∇

⊺𝑓(𝑋𝑖), (4.2)

in order to find the principal components of𝕄, that is

𝕄 = 𝑂⊺𝑑Λ𝑂𝑑,
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where 𝑂𝑑 is an orthonormal matrix and Λ is a diagonal matrix of decreas-
ing eigenvalues. While the true𝕄 is unknown, if one is able to estimate the
gradient of the regression function then taking the 𝑘 largest components
of the decomposition of

�̂�𝑛 =
1
𝑛

𝑛

∑
𝑖=1
∇̂𝑛𝑓(𝑋𝑖)∇̂

⊺
𝑛𝑓(𝑋𝑖),

yields an estimate of the 𝑘 indexes subspace and therefore provided that
the model is correct a good dimensionality reduction method. Several
improvements to this procedure have been proposed in order to improve
the quality of the estimator. In Dalalyan, Juditsky, and Spokoiny (2008),
the authors propose to replace eq. (4.2) by

𝕄𝐿 =
𝐿

∑
𝑖=1
𝛽𝑖𝛽
⊺
𝑖 , (4.3)

where the 𝛽𝑖 are defined by

𝛽𝑘 =
1
𝑛

𝑛

∑
𝑖=1
∇𝑓(𝑋𝑖)𝜓𝑘(𝑋𝑖),

with the 𝜓𝑘 forming an orthogonal basis such that

1
𝑛

𝑛

∑
𝑖=1
𝜓𝑙(𝑋𝑖)𝜓𝑚(𝑋𝑖) = 𝛿𝑙,𝑚.

In this case, the eigenvectors of𝕄 are eigen vectors of𝕄𝐿 and𝕄𝑛 = 𝕄.
The authors show that𝕄𝐿 is easier to estimate and that the estimated
projection matrix formed from the obtained eigenvectors can be written
as

�̂�𝑛 ∈ argmin
𝑇∈𝒜𝑚

max
𝑙
̂𝛽⊺𝑙 (𝕀 − 𝑇) ̂𝛽𝑙,

s.t. 𝒜𝑚 = {𝑇 ∶ 𝑇 = 𝑇
⊺, 0 ⪯ 𝑇 ⪯ 𝕀, tr𝑇 ≤ 𝑚} ,

where𝑚 is the guessed edr dimension. The previous references are all con-
cerned with outer products of gradients so as to recover some dimension-
reduction subspace. Estimators of the gradients have also been proposed
for zeroth-order optimization (Nesterov and Spokoiny [2017]; Yining
Wang et al. [2018]; Berahas et al. [2020], see e.g. ) and can benefit from good
convergence properties.Another possible approach is to remark that the
quantity of interest in eq. (4.3) is not actually the gradient but the expected
gradient outerproduct (egop) 𝔼[∇𝑓(𝑋)∇⊺𝑓(𝑋)]. While estimating the
gradient first in order to build a plugin estimator of this outerproduct
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is, of course, a perfectly viable direction; it is, if at all possible, a better
idea to estimate directly the quantity of interest without relying on plugin
estimators as it is easier to control the risk of a simple estimator than the
product of estimators. This is the approach taken by Xia et al. (2002);
Xia (2007); Trivedi et al. (2014), where kernel estimators of the gradient
outerproduct are proposed and shown to be asymptotically consistent.
Ye and Xie (2012) extend these kernel estimators to exploit the potential
sparsity of the gradient by use of a lasso formulation in order to give non-
asymptotic results on the quality of the estimator of the gradient. Whereas
the use of standard nonparametric methods for gradient estimation is
documented in the literature (see Fan and Gijbels [1996]; Delecroix and
Rosa [1996]; De Brabanter et al. [2013], for the use of local polynomial
with kernel smoothing techniques; Gasser and H.-G. Müller [1984], for
the so-called Gasser-Muller alternative; S. Zhou and Wolfe [2000], for the
use of regression spline; and Mukherjee and D.-X. Zhou [2006], for the
estimation on a reproducing kernel Hilbert space with kernel smoothing),
it is the purpose of the rest of this chapter to investigate the performance
of an alternative local averaging method, the popular 𝑘-nn method. As
𝑘-nn provides piecewise constant estimates, it is easier to conceptualize
for the practitioner and, more importantly, the neighbourhoods deter-
mined by the parameter 𝑘 are data-driven and often more consistent than
those defined by the bandwidth in the kernel setting, especially in high
dimensions. Whereas one has to adapt the bandwidth of the kernels in
the kernel averaging setting in order to ensure a certain number of points
are always contained in the implicitly defined ball, the risk of patholog-
ical cases where some points are isolated from the rest grows with the
dimension. This problem is entirely alleviated by the choice of 𝑘-nn, by
definition, at the cost of neighbourhoods of varying sizes which therefore
makes the theoretical analysis less straightforward.

Here we investigate the behaviour of the estimator of the supposedly
sparse gradient of the regression function at a given point 𝑥 ∈ ℝ𝑑, obtained
by solving a regularized local linear version of the 𝑘-nn problem with a
Lasso penalty. Precisely, nonasymptotic bounds for the related estimation
error are established. Whereas 𝑘-nn estimators of the regression function
have been extensively analysed (see e.g. Biau, Cérou, and Guyader [2010];
Kpotufe [2011]; Jiang [2019], and the references therein), the result stated
in this section is the first combining both uniform asymptoticity as well a
nearest neighbour approach, to the best of our knowledge.

While the dimension reduction aspect has already been exposed in
detail earlier in this section, the relevance of the approach promoted is
illustrated in §4.5 by several applications, even beyond the primary goal
of dimension reduction. Reduction dimension is first studied in §4.5.1
for the standard regression setting where variable selection algorithm
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that exploits the local nature of the gradient estimator proposed is first
exploited to refine the popular random forest algorithm (see Breiman
[2001]): by exploiting the node estimate of the gradient we are able to
direct better the choice of cuts. Very simple to implement and accurate,
as supported by the various numerical experiments carried out, it offers
an attractive and flexible alternative to existing traditional methods such
as pca or the more closely related method of Dalalyan, Juditsky, and
Spokoiny (2008), allowing for a local reduction of the dimension rather
than implementing a global preprocessing of the data. We then turn our
attention to the censored setting in §4.5.2 where the survival gradient is
estimated in order to retrieve the genes relevant to the prediction of cancer.
We next show in §4.5.3 how a rough statistical estimate of the gradient of
any smooth objective function based on the estimation principle previously
analysed in the context of regression can be exploited in a basic gradient
descent algorithm. We exploit the local structure of the algorithm to be
able to reuse past computations in order to calculate our estimator and
jump to a better local minimum at each gradient step as well. Finally in
§4.5.4, we give an example of the usefulness of a sparse gradient estimate
when the gradient is believed to be truly sparse: we use our estimator to
retrieve the direction of interest for a specific attribute inside a disentangled
representation and show how this can be used as an ad-hoc measure of
disentanglement.

4.3 Sparse Local Linear Regression
Before stating the main theoretical results in §4.4, we start by quickly
exposing the theoretical setting and assumptions required for the results,
as well as replace our approach among the previous results in the litterature.
We postpone the technical proofs to §4.7 at the end of the chapter in order
not to hinder readability.

As we rely heavily on the definition of neighbourhood and therefore
their associated metrics, we start by giving a reminder of the notations we
will use for the various norms necessary in the proofs and results. For any
vector 𝑥 = (𝑥1,…, 𝑥𝑑) in ℝ𝑑 we write the ℓ∞-norm, the ℓ1-norm and the
ℓ2-norm as

‖𝑥‖∞ ≝ max(|𝑥1| ,…|𝑥𝑑|),

‖𝑥‖1 ≝ |𝑥1| + … + |𝑥𝑑| ,

‖𝑥‖2 ≝ √𝑥
2
1 +… + 𝑥2𝑑 .

We also define byℬ(𝑥, 𝜏) the closed ball of centre 𝑥 ∈ ℝ𝑑 and radius 𝜏 > 0,
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that is
ℬ(𝑥, 𝜏) ≝ {𝑧 ∈ ℝ𝑑 ∶ ‖𝑥 − 𝑧‖∞ ≤ 𝜏} .

4.3.1 𝑘-nn estimation methods in regression

Let 𝑥 ∈ ℝ𝑑 be fixed and 𝑘 ∈ {1,…, 𝑛}. Define

̂𝜏𝑘(𝑥) ≝ inf{𝜏 ≥ 0 ∶
𝑛

∑
𝑖=1
𝟙ℬ(𝑥,𝜏) (𝑋𝑖) ≥ 𝑘} ,

which quantity is referred to as the 𝑘-nn radius. Indeed, observe that,
equipped with this notation, ℬ(𝑥, ̂𝜏𝑘(𝑥)) is the smallest ball with centre 𝑥
containing 𝑘 points of the sample𝒟𝑛 and themapping 𝛼 ∈ (0, 1] ↦ ̂𝜏𝛼𝑛(𝑥)
is the empirical quantile function related to the sample (‖𝑥 − 𝑋1‖∞)𝑖. The
rationale behind 𝑘-nn estimation in the regression context is simplistic, the
method consisting in approximating the regression function 𝑟(𝑥) = 𝔼[𝑌 ∣
𝑋 = 𝑥] by𝔼[𝑌 ∣ 𝑋 ∈ ℬ(𝑥, 𝜏)], the mapping 𝑟 being assumed to be smooth
at 𝑥, and computing next the empirical version of the approximant (i.e.
replacing the unknown distribution ℙ by the raw empirical distribution).
This yields the estimator

̂𝑟𝑘(𝑥) =
1
𝑘
∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝑌𝑖, (4.4)

usually referred to as the standard 𝑘-nearest neighbour predictor at 𝑥 and
where we define 𝑖(𝑥) as the neighbourhood

̂𝚤𝑘(𝑥) = {𝑗 ∶ 𝑋𝑗 ∈ ℬ(𝑥, ̂𝜏𝑘(𝑥))} .

Of course, the mapping 𝑥 ∈ ℝ𝑑 ↦ ̂𝑟𝑘(𝑥) is locally/piecewise constant,
just like 𝑥 ∈ ℝ𝑑 ↦ ̂𝜏𝑘(𝑥). The local average ̂𝑟𝑘(𝑥) can also be naturally
expressed as

̂𝑟𝑘(𝑥) = argmin
𝑟∈ℝ
∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑌𝑖 − 𝑟)2. (4.5)

For this reason, the estimator eq. (4.4) is sometimes referred to as the local
constant estimator in the statistical literature. Following in the footsteps
of the approach proposed in Fan (1992), the estimation of the regression
function at 𝑥 can be refined by approximating the supposedly smooth 𝑟(𝑧)
around 𝑥 in a linear fashion, rather than by a local constant𝑚, since we
have by virtue of a first-order Taylor expansion:

𝑟(𝑧) = 𝑟(𝑥) + ∇𝑟(𝑥)⊺(𝑧 − 𝑥) + 𝑜(‖𝑧 − 𝑥‖).

For any point𝑋𝑖 close to 𝑥, one may write locally

𝑟(𝑋𝑖) ≈ 𝑟 + 𝛽
⊺ (𝑋𝑖 − 𝑥)
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122: Note that the problem de-
pends on 𝑥 and that the solution
is therefore a function of 𝑥.

and the local linear estimator of 𝑟(𝑥) and the related estimator of the
gradient 𝛽(𝑥) = ∇𝑟(𝑥) are then defined as

argmin
(𝑟,𝛽)∈ℝ𝑑+1

∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑌𝑖 − 𝑟 − 𝛽

⊺(𝑋𝑖 − 𝑥))
2 . (4.6)

Because of its reduced bias, the local linear estimator (the first argument
of the solution of the optimization problem above) can improve upon
the local constant estimator eq. (4.4) in moderate dimensions. However,
when the dimension 𝑑 increases, its variance becomes large and the design
matrix of the regression problem is likely to have small eigenvalues, causing
numerical difficulties. For this reason, we introduce here a lasso-type
regularized version of eq. (4.6), namely

argmin
(𝑟,𝛽)∈ℝ𝑑+1

∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑌𝑖 − 𝑟 − 𝛽

⊺(𝑋𝑖 − 𝑥))
2 + 𝜆‖𝛽‖1, (4.7)

with solution122 ( ̃𝑟𝑘(𝑥), ̃𝛽𝑘(𝑥)) and where 𝜆 > 0 is a tuning parameter
governing the amount of ℓ1-complexity penalization. For the moment,
we let it be a free parameter and will propose a specific choice in the next
section. Focus is here on the gradient estimator ̃𝛽𝑘(𝑥), i.e. the second
argument in eq. (4.7). In the subsequent analysis, nonasymptotic bounds
are established for specific choices of 𝜆 and 𝑘. The following technical
assumptions are required.

4.3.2 Technical hypotheses
The hypothesis formulated below permits us to relate the volumes of the
balls ℬ(𝑥, 𝜏) to their probability masses, for 𝜏 small enough.

Assumption 4.1. There exists 𝜏0 > 0 such that restriction of𝑋’s distribu-
tion on ℬ(𝑥, 𝜏0) has a bounded density 𝑔, bounded away from zero, with
respect to Lebesgue measure:

𝑏𝑓 = inf
𝑦∈𝐵(𝑥,𝜏0)
𝑔(𝑦) > 0,

𝑈𝑓 = sup
𝑦∈𝐵(𝑥,𝜏0)
𝑔(𝑦) < +∞.

Suppose in addition that 𝑈𝑓/𝑏𝑓 ≤ 2.

The constant 2 involved in the condition above for notational simplicity
can be naturally replaced by any constant 1 + 𝛾, with 𝛾 > 0. The next
assumption, useful to control the variance term, is classical in regression,
it stipulates that we have 𝑌 = 𝑟(𝑥) + 𝜀, with a sub-Gaussian residual 𝜀
independent from𝑋.
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Assumption 4.2 (Sub-Gaussianity). The zero-mean and square integrable
random variable 𝜀 = 𝑌 − 𝑟(𝑥) is independent from𝑋 and is sub-Gaussian
with parameter 𝜎2 > 0, i.e. ∀𝜆 ∈ ℝ,

𝔼 [exp(𝜆𝜀)] ≤ exp(−𝜎
2𝜆2

2
) ,

In order to control the bias error when estimating the gradient 𝛽(𝑧) =
∇𝑟(𝑧) of the regression function at 𝑥, smoothness conditions are naturally
required.

Assumption 4.3 (Residual lipschitzianity). The function 𝑟(𝑧) is differen-
tiable on ℬ(𝑥, 𝜏0) with gradient 𝛽(𝑧) = ∇𝑟(𝑧) and there exists 𝐿2 > 0 such
that for all 𝑧 ∈ ℬ(𝑥, 𝜏0),

|𝑟(𝑧) − 𝑟(𝑥) − 𝛽(𝑥)(𝑧 − 𝑥)| ≤ 𝐿2 ‖𝑧 − 𝑥‖2∞ .

Finally, a Lipschitz regularity condition is required for the density 𝑔.

Assumption 4.4 (𝑔 lipschitzianity). The function 𝑔 is 𝐿-Lipschitz at 𝑥 on
ℬ(𝑥, 𝜏0), i.e. there exists 𝐿 > 0 such that for all 𝑧 ∈ 𝐵(𝑥, 𝜏0),

|𝑔(𝑧) − 𝑔(𝑥)| ≤ 𝐿 ‖𝑧 − 𝑥‖∞ .

We point out that, as the goal of this chapter is to give the main ideas
underlying the use of the 𝑘-nnmethodology for gradient estimation rather
than carrying out a fully general analysis, the ℓ∞-norm is considered here,
making the study of ℓ1 regularization easier. The results of this chapter
can be extended to other norms at the price of additional work.

4.4 A 𝑘-nn based estimator of the gradient
The main theoretical result of the present paper is now stated and further
discussed. Under the hypotheses listed in the previous section and for
specific choices of 𝑘 and 𝜆, it provides a nonasymptotic bound for the esti-
mator ̃𝛽𝑘(𝑥) of the gradient 𝛽(𝑥) = ∇𝑟(𝑥) at 𝑥 given by eq. (4.7). Whereas
nonasymptotic bounds for 𝑘-nn estimators of the regression function
have been established under various smoothness assumptions (see e.g.
Jiang [2019]; or Kpotufe [2011]), no nonasymptotic study of 𝑘-nn based
estimator of the gradient of the regression function is documented in the
literature. To the best of our knowledge, the result proved in this article
is the first of this nature. Two key quantities are involved in the upper
confidence bound given in Theorem 4.1, the (deterministic) radius

𝜏𝑘 = (
2𝑘
𝑛𝑏𝑓2𝑑
)
1/𝑑

,
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that upper bounds the 𝑘-nn radius on an event holding true with high
probability, with corresponding neighbourhood

𝚤𝑘(𝑥) = {𝑗 ∶ 𝑋𝑗 ∈ ℬ(𝑥, 𝜏𝑘(𝑥))} ,

as well as the cardinality of the so-called local active set

𝒮𝑥 = {1 ≤ 𝑘 ≤ 𝑑 ∶ 𝛽𝑘(𝑥) ≠ 0} ,

which, for clarity reasons, is supposed to be non-empty.

Theorem 4.1. Suppose that Assumptions 4.1 to 4.4 are fulfilled. Let 𝑛 ≥ 1
and 𝑘 ≥ 1 such that 𝜏𝑘 ≤ 𝜏0.

𝜆 = 𝜏𝑘 (√2𝜎2
log (16𝑑/𝛿)
𝑘
+ 𝐿2𝜏2𝑘) .

Then, we have with probability larger than 1 − 𝛿,

‖ ̃𝛽𝑘(𝑥) − 𝛽(𝑥)‖2 ≤ 24
2√|𝒮𝑥| (𝜏−1𝑘 √

2𝜎2 log (16𝑑/𝛿)
𝑘

+ 𝐿2𝜏𝑘) , (4.8)

as soon as

𝐶1 |𝒮𝑥| log(
𝑑𝑛
𝛿
) ≤ 𝑘 ≤ 𝐶2𝑛,

𝜏2𝑘 ≤
𝑏2𝑓
𝐶3 |𝒮𝑥| 𝐿2

∧ 𝜏20 ,

where 𝐶1, 𝐶2 and 𝐶3 are universal constants.

The analysis of the accuracy of the nearest neighbour estimate ̂𝑟𝑘(𝑥)
classically involves the following decomposition of the estimation error

̂𝑟𝑘(𝑥) − 𝑟(𝑥) = ( ̂𝑟𝑘(𝑥) − 𝑟𝑘(𝑥)) + (𝑟𝑘(𝑥) − 𝑟(𝑥)) , (4.9)

where
𝑟𝑘(𝑥) =

1
𝑘
∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝑟(𝑋𝑖).

The approach developed in Jiang (2019) essentially consists in combining
this decomposition with the fact that ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘 with high probability. By
its own nature, our local linear Lasso regularized estimate of the gradient
̃𝛽𝑘 cannot be treated in the same way. First, in order to take advantage

of the Lasso regularization in sparse situations (i.e. when the gradient
at 𝑥 depends on a small number of covariates solely), we rely on a basic
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inequality from Hastie, Tibshirani, and Wainwright (2015), Lemma 11.1
which is useful when analysing standard Lasso estimates. Second, we
need to control the size of the neighbourhoods ̂𝜏𝑘(𝑥) on an event of high
probability. In this respect, we slightly deviate from the approach of Jiang
(2019): we do not rely on concentration results over vc classes but only on
the Chernoff concentration bound. This way, we can relax significantly the
lower bound conditions for 𝑘 as the dimension𝑑 increases, seeTheorem4.2
below, which compares favourably with Corollary 1 in Jiang (2019) for
instance.

Balancing between the bias and the variance term of the upper bound
provided in eq. (4.8) we obtain that the optimal value for 𝑘 is 𝑘 ∼ 𝑛4/(4+𝑑).
In this case, the bound stated above yields the rate 𝑛−1/(4+𝑑). As a conse-
quence, our bound matches the minimax rate (up to log terms) given in
Stone (1982) for the problem of the estimation of the derivative (in a 𝐿2
sense).

4.4.1 Pointwise 𝑘-nn estimation of 𝑟(𝑥)
Though it concerns the local estimation error, the bound in Theorem 4.2
below can be viewed as a refinement of the nonasymptotic results recently
established in Jiang (2019) (see alsoKpotufe [2011]), which provide uniform
bounds in 𝑥. It requires a local smoothness condition for the regression
function. From now on, ‖⋅‖ denotes any norm on ℝ𝑑.

Assumption 4.5. The regression function 𝑟(𝑧) is 𝐿1-Lipschitz at 𝑥, i.e.
there exists 𝐿1 > 0 such that for all 𝑧 ∈ ℬ(𝑥, 𝜏0) = {𝑥′ ∈ ℝ𝑑 ∶ ‖𝑥′ − 𝑥‖ ≤
𝜏0},

|𝑟(𝑥) − 𝑟(𝑧)| ≤ 𝐿1 ‖𝑥 − 𝑧‖ .

Theorem 4.2. Suppose that Assumptions 4.1, 4.2 and 4.5 are fulfilled and
that 2𝑘 ≤ 𝑛𝜏0𝑏𝑓𝑉𝑑. Then for any 𝛿 ∈ (0, 1) such that 𝑘 ≥ 4 log(2𝑛/𝛿), we
have with probability 1 − 𝛿:

| ̂𝑟𝑘(𝑥) − 𝑟(𝑥)| ≤ √
2𝜎2 log(4/𝛿)
𝑘
+ 𝐿1 (

2𝑘
𝑛𝑏𝑓𝑉𝑑
)
1/𝑑

, (4.10)

where 𝑉𝑑 = ∫𝟙ℬ(0,1)(𝑥) d𝑥 denotes the volume of the unit ball.

We obtain a weaker condition on the value of 𝑘 than that obtained in
Jiang (2019) (see Corollary 1 therein), due to our different treatment of
the approximation term (the second term in decomposition eq. (4.9)) is
different (see the argument detailed in §4.7). With 𝑘 ∼ 𝑛2/(2+𝑑), the bound
stated above yields the minimax rate 𝑛−1/(𝑑+2).
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4.5 Numerical Experiments
In order to motivate the need for a robust estimator of the gradient, we
introduce three different examples of use of our estimator compared to
existing approaches. All the code necessary for the reproduction of the ex-
periments as well as figures can be found at g i t . s r . h t / ~ a u s s e t g / l o c a l l i n e a r .

As our estimator is sensitive to the choice of hyperparameters 𝑘 and
𝜆 we use a local leave-one-out procedure described in algorithm 2 for
hyperparameter selection. As only the regression variable 𝑌 is observed,
the regression error is used as a proxy loss in the cross-validation. The
high cost of 𝑘-nn is amortized by using 𝑘-d trees, bringing the total av-
erage complexity of the nearest neighbour search down to 𝑂(𝑛 log 𝑛). In
cases where the aforementioned cost is too high (𝑛 in the order of mil-
lions) it is possible to instead make use of approximate nearest neighbour
schemes such as HNSW (Malkov and Yashunin [2020]). Approximate
Nearest Neighbours algorithms have recently enjoyed a regain of interest
and provide high accuracy at a very low computational cost (Aumüller,
Bernhardsson, and Faithfull [2018]).

Algorithm 2 Local Leave-One-Out
Require: 𝑥: sample point, (𝑋, 𝑌): training set, (𝐾, 𝜆): grid

1: 𝑋LoO ← N e i g h b o u r h o o d o f 𝑥 i n 𝑋 o f s i z e 𝑛
2: for 𝑘 ∈ 𝐾, 𝜆 ∈ 𝜆 do
3: for𝑋𝑖 ∈ 𝑋LoO do
4: 𝑟𝑖, 𝛽𝑖 ← e s t i m a t e d g r a d i e n t a t 𝑋𝑖 w . r . t 𝑋,𝑌 u s i n g eq. (4.7)
5: end for
6: e r r o r 𝑘,𝜆 ←

1
𝑛 ∑
𝑛
𝑖=1(𝑟𝑖 − 𝑌𝑖)

2

7: end for
8: 𝑘⋆, 𝜆⋆ ← argmin𝑘,𝜆 e r r o r 𝑘,𝜆
9: return 𝑘⋆, 𝜆⋆

4.5.1 Variable Selection
While a large number of observations is desirable the same is not necessar-
ily the case for the individual features; a large number of features can be
detrimental to the computational performance of most learning methods
but also harmful to the predictive performance. In order to mitigate the
detrimental impact of the high dimensionality, or curse of dimensionality,
one can try to reduce the effective dimension of the problem. A large body
of work exists on dimensionality reduction as a preprocessing step that
considers the intrinsic dimensionality of 𝑋 by considering for example

git.sr.ht/~aussetg/locallinear
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that𝑋 lies on a lower-dimensional manifold. Those approaches only con-
sider𝑋 in isolation and do not take into account 𝑌 which is the variable of
interest. It is possible to use the information in 𝑌 to direct the dimension
reduction of𝑋, either by treating 𝑌 as side information, as is done in Bach
and Jordan (2005), or by considering the existence of an explicit index
space such that 𝑌𝑖 = 𝑔(𝑣

⊺
1𝑋𝑖,…, 𝑣

⊺
𝑚𝑋𝑖) + 𝜀𝑖 as is done in Dalalyan, Juditsky,

and Spokoiny (2008). In the latter case, it is possible to observe that the
index space lies on the subspace spanned by the gradient.

In contrast with the work of Dalalyan, Juditsky, and Spokoiny (2008)
our approach is local and it is therefore possible to retrieve a different
subspace in different regions of ℝ𝑑. As localizing the estimator increases
its variance, we choose to only identify the dimensions of interest instead
of estimating the full projection matrix. We introduce Gradient Guided
Trees in algorithm 3 to exploit the local aspect of our estimator in order to
direct the cuts in a random tree: at each step, cuts are drawn randomly with
probability proportional to estimated mean absolute gradient in the cell.
We use the Random Survival Forest algorithm of Ishwaran and Kogalur

Algorithm 3Node Splitting for Gradient Guided Trees
Require: (𝑋, 𝑌): training set, N o d e : indexes of points in the node

1: ∇𝑟(𝑋𝑖) ← e s t i m a t e d g r a d i e n t a t 𝑋𝑖, ∀𝑖 ∈ N o d e u s i n g eq. (4.7)
2: 𝜔 ← ∑𝑖∈N o d e |∇𝑟(𝑋𝑖)|
3: 𝐾 ← s a m p l e √𝑑 d i m e n s i o n s i n {1,…, 𝑑} w i t h p r o b a b i l i t i e s ∝ 𝜔
4: 𝑘, 𝑐 ← b e s t t h r e s h o l d 𝑐 a n d d i m e n s i o n 𝑘
5: return 𝑘, 𝑐

(2007) as the best algorithm, which like most random forest models work
by aggregating random trees in order to reduce the variance. Each sepa-
rate random tree works by recursively splitting the space along the axes as
shown in fig. 4.3 by selecting the cut that minimizes some homogeneity
criterion of the leaves such as the log-rank statistic in the case of survival
analysis (Shimokawa, Kawasaki, and Miyaoka [2015]; Robins and Finkel-
stein [2000]). In order to reduce the computational burden as well as
introduce randomness to decorrelates the individual trees, randomness is
introduced not only in the samplingmechanism but the choice of potential
cuts. We introduce the knowledge of the gradient in this last step where
instead of choosing candidate splits completely at random we choose with
a probability proportional to the gradient. Note that in order to reduce
the number of computations needed it is possible to precompute the gra-
dient on the whole training set once at the beginning and then reuse the
gradients of each individual example inside the node themselves by aver-
aging the precomputed gradients over the cell members. We demonstrate
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𝑥2

𝑥1

𝑥1 ≤ 2.7

𝑥2 ≤ 1.35

𝑥1 ≤ 1.5

Figure 4.3: Recursive orthogonal
splitting of the space in homoge-
neous cells by a tree.

Description Loss

Dataset 𝑛 𝑑 rf ggf

Wisconsin 569 30 0.0352 ± 3.29 ⋅ 10−4 0.0345 ± 3.35 ⋅ 10−4
Heart 303 13 0.128 ± 6.6 ⋅ 10−4 0.124 ± 8.6 ⋅ 10−4
Diamonds 53940 23 680033 ± 3.45 ⋅ 109 664265 ± 2.81 ⋅ 109
Gasoline 60 401 0.678 ± 0.451 0.512 ± 0.347
SDSS 10000 8 0.872 ⋅ 10−3 ± 4.50 ⋅ 10−6 0.776 ⋅ 10−3 ± 6.00 ⋅ 10−6

Table 4.1: Performance of the
two random forest algorithms on
a 50-folds cross validation.

the improvements brought by guiding the cuts by the local information
provided by the gradient by comparing the performance of a vanilla re-
gression random forest with the same procedure but with local gradient
information. We consider five datasets: the Breast Cancer Wisconsin
(Diagnostic) Data Set introduced in Street, Wolberg, and Mangasarian
(1993); the Heart Disease dataset introduced by Detrano et al. (1989); the
classic Diamonds Price dataset; the Gasoline NIR dataset introduced by
Kalivas (1997) and the Sloan Digital Sky Survey DR14 dataset of Abolfathi
et al. (2018). We measure the 𝐿2 loss by cross validation across 50 folds
using the same hyperparameters for the growing of the forest in both the
standard and gradient guided variants.

We denote by random forest (rf), forests grown from the standard clas-
sification and regression tree (cart) algorithm of Breiman et al. (1984)
while gradient guided forest (ggf) denote forests grown from the Gra-
dient Guided Trees previously introduced. As seen in table 4.1, gradient
guided split sampling consistently outperform the vanilla variant. When
all variables are relevant, as is the case when the variables were carefully
selected by the practitioner with prior knowledge, our variant performs
similarly to the original algorithm while performance is greatly improved
when only a few variables are relevant, such as in the NIR dataset (Portier
and Delyon [2014]).
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Figure 4.4: Map of the expres-
sion of 19946 genes from 1079
individuals

123: The data recorded corre-
sponds to counts of deoxyri-
bonucleic acid (dna) sequences
reverse transcribed from rna
sequences.

4.5.2 Survival Gradients
While the method presented here makes it possible to compute the gra-
dient of a regression function in the standard setting, we are interested
more specifically in this manuscript in the case of censored data. Luckily,
the formulation used for our estimate of the gradient is a penalized erm
problem, and we have seen how to deal with censored observations in the
erm case in chapter 2 but reweighting the individual observations by their
inverse probability of censoring. The local linear problem of eq. (4.7) then
becomes

argmin
(𝑟,𝛽)∈ℝ𝑑+1

∑
𝑖∈ ̂𝚤𝑘(𝑥)

𝛿𝑖
̂𝑆𝐶(𝑇𝑖− ∣ 𝑋𝑖)

(𝑇𝑖 − 𝑟 − 𝛽
⊺(𝑋𝑖 − 𝑥))

2 + 𝜆‖𝛽‖1, (4.11)

in the right censored setting. Given the previous problem it is then possible
to estimate the survival gradient of the regression function 𝑟 and therefore
select the dimensions of interest for the prediction of the survival.

We apply eq. (4.11) to the tcga-BReast CAncer gene (brca) dataset
which consists of gene expression quantification gathered by rna sequenc-
ing.123 The dataset consists of 19946 variables, after discarding 3 always
constant variables, representing the expression of genes encoding various
proteins, some suspected of playing a role in the susceptibility to can-
cer (see Fontanilla Ramirez [2020], for an example on Lamin B1). The
tcga-brca dataset in particular consists of patients diagnosed with breast
cancer and focuses on the goal of identifying the various genetic risk fac-
tors of which the brcas genes have been shown to be examples. In our
case we use normalized expression data of fig. 4.4 as our covariate of in-
terest𝑋 and the time until death from the diagnostic as 𝑌, approximately
80% of the observations are censored. While the map of the genome of
fig. 4.4 is fairly uninformative and uniform, which is to be expected as
its normalized in order to be readable, computing the gradient of the re-
gression function paints a different picture. By using the same principle
as earlier, we estimate the mean gradient of the dataset ∇̅𝑟 by means of
eq. (4.11). Given the very high number of dimensions and therefore the
very high cost of distance computations, the use of an acceleration stucture
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Figure 4.5: Gradient of the
survival regression function.

is here primordial. For this specific example, instead of 𝑘-dimensional
(kd)-trees, which results in exact nearest neighbour search, we use random
tree projections as an approximate generalization of kd-trees as proposed
by Hyvonen et al. (2016) and implemented in the S h r i k e . j l package. Pat-
terns of variable importance clearly emerge in fig. 4.5 and can help direct
attention to specific genes of interest.

4.5.3 Gradient Free Optimization
Many of the recent advances in the field of machine learning have been
made possible in one way or another by advances in optimization; both
in how well we are able to optimize complex function and what type of
functions we are able to optimize if only locally. Recent advances in auto-
matic differentiation as well as advances that push the notion of what can
be differentiated have given rise to the notion of differentiable program-
ming (see Innes et al. [2019]) in which a significant body of work can be
expressed as the solution to a minimization problem usually then solved
by gradient descent.

We study here the use of the local linear estimator of the gradient in
algorithm 4 in cases where analytic or automatic differentiation is impos-
sible, and compare it to a standard gradient free optimization technique
as well as the oracle where the true gradient is known. While line 1 bears
resemblance with Gaussian smoothing and could therefore be seen as
analogous to gradient estimation via Gaussian smoothing (see Berahas
et al. (2020)), two key differences here are the subsequent local linear step
as well as the fact that the samples from line line 1 are not necessarily the
samples used in the local linear estimator of line line 4.

We first minimize the standard but challenging Rosenbrock function
for different values of 𝑑. which is defined as

𝑓(𝑥) = 100
𝑑−1

∑
𝑖=1
(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑥𝑖 − 1)2.

We compare for reference our approach to the Nelder-Mead (simplex
search) algorithm; a standard gradient free optimization technique. It
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Algorithm 4 Estimated Gradient Descent
Require: 𝑥0: initial guess, 𝑓: function ℝ𝑑 ↦ ℝ,𝑀: budget

1: 𝑋 ← 𝑋1,…,𝑋𝑀 w i t h 𝑋𝑖 ∼ 𝒩(𝑥0, 𝜀 × 𝐼𝑑)
2: 𝑌 ← 𝑓(𝑋) ≝ 𝑓(𝑋1),…, 𝑓(𝑋𝑀)
3: while n o t S t o p p i n g C o n d i t i o n do
4: 𝑟, 𝛿 ← e s t i m a t e d g r a d i e n t a t 𝑥 w . r . t 𝑋,𝑌 u s i n g eq. (4.7)
5: 𝑋 ← 𝑋,𝑋1,…,𝑋𝑀 w i t h 𝑋𝑖 ∼ 𝒩(G r a d i e n t S t e p (𝑥, 𝛿), 𝜀 × 𝐼𝑑)
6: 𝑌 ← 𝑓(𝑋)
7: 𝑥 ← argmin𝑋𝑖 {𝑓(𝑋𝑖)}
8: end while
9: return 𝑥

124: The number of function
evaluations does not have any
meaning for the true gradient.
We use here that 1 estimated
gradient step ≈ 50 function
evaluations. 5000 function
evaluations therefore equate to
100 gradient steps.

is apparent in fig. 4.6124 that estimating the gradient yields a significant
advantage compared to traditional gradient-free techniques that usually
have to rely on bounding arguments and feasible regions and therefore
scale unfavourably with the dimension. As our approach uses a nearest
neighbours formulation for the gradient estimate, we are able to efficiently
reuse past samples in the current estimate of the gradient; this makes it
possible to achieve a sufficiently accurate estimate of the gradient even
in high dimensions. We compare in fig. 4.7 the approach developed pre-
viously to the estimators proposed by Yining Wang et al. (2018) and Fan
(1992). As the approach proposed by Yining Wang et al. (2018) includes
the use of mirror descent, for fairness, we have implemented our proposed
gradient descent algorithm of algorithm 4 using our estimator as well as
those of Yining Wang et al. (2018) and Fan (1993) for the gradient where
we permit the reuse of previous samples where appropriate. We then reim-
plemented the mirror descent algorithm of Yining Wang et al. (2018) with
the previous estimators of the gradient. We observe in fig. 4.7 that our
method compares favourably: our estimator is able to reuse past samples
in its gradient estimation and has therefore access to a better gradient
estimate for a fixed, given number of function evaluations. We apply the
previous method to the minimization of the log-likelihood of a logistic
model on the UCI’s Adult data set, consisting of 48842 observations and 14
attributes represented as 𝜃 ∈ ℝ101 once one-hot encoded and an intercept
added.

ℒ𝜃(𝑋) = −∑
𝑖
𝑌𝑖 log(1 + exp(−𝜃

⊺𝑋𝑖)) − (1 − 𝑌𝑖) log(1 + exp(𝜃
⊺𝑋𝑖)) .

We also compare the effective CPU wall time needed to reach a given
log-likelihood in order to give a more comprehensive view of the relative
performance of the multiple algorithms. Given that the time per iteration
can vary greatly depending on the cost of evaluations and the cost of the
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Figure 4.6: Nesterov Gradient
Descent on the rosenbrock func-
tion for 𝑑 = 50 (top) and 𝑑 = 100
(bottom) w.r.t. the number of
evaluations.
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the logistic regression on a test
set, trained by Nesterov Gradient
Descent with respect to the
number of evaluations (top) and
time (bottom).

gradient procedures, it is important to use both the number of evaluations
and the time metric jointly with the former being more relevant as the
cost of individual function evaluations increases.

4.5.4 Disentanglement
Disentangled representation learning aims to learn a representation of the
input space such that the independent dimensions of the representation
each encode separate but meaningful attributes of the original feature
space. If the space of interest is the space of faces, a disentangled represen-
tation would then for example be a lower-dimensional space where one
dimension encodes the sex of the subject, another its age, and so forth. We
show here how our estimator can be useful for retrieving the dimensions
associated with a concept in a supervised manner.

A 𝛽-vae (Higgins et al. [2017]) model is trained on the C A C D 2 0 0 0 dataset
of celebrity faces with age labels to first build low-dimensional a repre-
sentation of the images and then extract the direction relating to age. We
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Figure 4.9: Encoder-Decoder
Architecture used for this work
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learn ℰΦ and𝒟𝜃 parameterizing 𝑞Φ and 𝑝𝜃, to minimize the loss

ℒ(𝜃,Φ; 𝑥, 𝑧, 𝛽) = 𝔼𝑞Φ(𝑧∣𝑥) [log𝑝𝜃(𝑥 ∣ 𝑧)] − 𝛽𝐷KL(𝑞Φ𝑥 ‖ 𝑥), (4.12)

where 𝛽 acts as a constraint on the representational power of the latent
distribution; 𝛽 = 1 leads to the standard vae formulation of Kingma and
Welling (2014) while 𝛽 > 1 increases the level of disentanglement. We use
a standard symmetrical encoder-decoder architecture for the variational
autoencoder, schematically presented in Figure fig. 4.9. All the relevant
implementation details can be found in the J u l i a code in the g i t repository
provided earlier.125 We learn a 512-dimensional representation of the
128 × 128 images and encode all the C A C D 2 0 0 0 images. Once all the images
have been encoded in ℝ512 it is possible to use the local linear estimator
of the gradient studied in this work to derive the gradient of the age with
respect to the latent variable, making it possible to produce a new version
of the input image that appears either older or younger as done in fig. 4.10.
By computing a local estimate of the gradient, we are able to derive a more
meaningful change when the age is not perfectly disentangled.

𝑧 + 0.1 × ∇𝑟(𝑧)

Figure 4.10: Extracting the
direction of interest for aging.

Note that the quality of the image reconstruction and generation is here
solely limited by the choice of the encoding and decoding model and is
not related to the methods introduced in this chapter, significant advances
in the quality of the decoding have been made in the recent years and if a

git.sr.ht/~aussetg/locallinear
git.sr.ht/~aussetg/locallinear
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better quality and less blurry decoded output is desired we encourage the
reader to replace the decoder with a P i x e l C N N architecture such as presented
in Salimans et al. (2017). The quality of the gradient is also significantly
impacted by the quality of the annotations as C A C D 2 0 0 is an automatically
annotated and noisy dataset.

Using our estimator it is possible to estimate the gradient ∇𝑟 of 𝑟(𝑧) =
𝔼[𝑌 ∣ 𝑍 = 𝑧] with respect to the latent variable 𝑍, as illustrated in fig. 4.10.
It is then possible to analyse the sparsity of ∇𝑟 to quantify the quality of
the disentanglement for varying level of 𝛽 by quantifying how far from
a single dimension the gradient for the age is concentrated. As the true
dimension is unknown, we instead measure the angular distance to all
dimensions reweighted by the magnitudes of the partial derivatives:

𝑑

∑
𝑘=1

|∇̅𝑘𝑟|
|∇̂𝑟(𝑥)|

cos(𝑒𝑖, |∇̅𝑟|) ,

where cos(𝑎, 𝑏) is the cosine similarity of 𝑎 and 𝑏 such that

cos(𝑎, 𝑏) = 𝑎 ⋅ 𝑏
‖𝑎‖ × ‖𝑏‖

,

and measures the similarity between the direction of the vectors indepen-
dently of their norm and where ∇̅𝑟 is the mean gradient of the dataset,
that is

|∇̅𝑟| = 1
𝑛

𝑛

∑
𝑖=1
|∇̂𝑟(𝑋𝑖)| .

We observe in fig. 4.11 that as 𝛽 increases the age slowly become disentan-
gled, as expected if one considers the age to be an important and indepen-
dent characteristic of human faces.

While not an entirely adequate metric for disentanglement, not only
because disentanglement does not necessarily require the dimensions to
be the one an observer expected but more importantly because this met-
ric requires an annotated dataset; we believe this metric can be useful
for practitioners. By measuring how close the estimated gradients are to
the axis, with respect to an annotated dataset of characteristics of inter-
est, a practitioner can ensure his model is sufficiently disentangled for
downstream tasks such as face manipulation by a user. We also believe
it is possible to design an end-to-end differentiable framework in order
to force disentanglement to consider the characteristics of interest: our
estimator is the solution to a convex optimization program and as such
admits an adjoint; it is therefore possible to fit a local linear estimator
inside an automatic differentiation framework such as done in Agrawal
et al. (2019).



4 Prediction in High Dimension 159

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

4.8

4.85

4.9

4.95

5

⋅10−2

𝛽

A
ge

en
ta
ng

le
m

en
t

Figure 4.11: Quality of disentan-
glement with respect to the age

4.6 Conclusion
The curse of dimensionality has proven to be a thorn in the side of both
theoricians as well as practictioners for as long as they have been analyzing
data. It is however possible, as we have seen at the very beggining of
this chapter in §4.2 to alleviate the problem, both in practice and in the
bounds of the various results of the machine learning, by thinking about
the geometry of the problem at hand in order to reduce the raw dimension
of the data to a more manageable intrinsic dimension. In this chapter we
have adopted in part this geometry of the data point of view by taking a
supervised approach to the problem. While many dimension reduction
methods model the data as lying on some manifoldℳ of lower dimension
than the overall space 𝕏, we chose here to study the geometry of the
tangent space of the regression function, that is the space spanned by the
gradient of the regressor. By assuming that the gradient of the regression
function is sparse, we are able to build a sparse estimator of the gradient,
which then itself yields a lower dimensional subspace which we take as our
effective dimension reduction (edr) space. While the results presented
here are a stark improvement to those of Jiang (2019), as the bound in
Theorem 4.2 involves the degree of sparsity of the gradient. The quality of
the edr space obtained by our approach is validated experimentally both
in §4.5.1 and §4.5.2 where we also show the usefulness of local methods
compared to the usual global methods. Of course, the usefulness of the
ability to estimate accurately the gradient of a function doesn’t stop at
finding priviledged dimensions as we have shown in §4.5.3 as well as



4 Prediction in High Dimension 160

126: glms are in practice in-
credibly powerful and therefore
represent a very good baseline.
Their relative simplicity and
popularity, however, mean that
they enjoy incredibly fast and
optimized solvers making their
use incredibly large data possible.

in a lesser measure in §4.5.4, therefore any further improvements that
better exploit the characteristics of the gradient are of great interest. Note
that the bound in Theorem 4.2, while taking into account the sparsity,
still involves the dimension 𝑑 of the full space which seems at odds with
our goal of ignoring the irrelevant dimensions in order to free ourselves
from the curse of dimensionality. It should be possible however to obtain
similar bounds with 𝑑 replaced by𝑚 the true edr dimension. Dalalyan,
Juditsky, and Spokoiny (2008) manages to obtain such bounds in the
specific case of multi-index regression but similar bounds also exist in the
more general manifold setting as shown in Aswani, Bickel, and Tomlin
(2011), it is therefore natural to seek in future works to try bridging the
gap between those results.

As banks such as BNP Paribas have access to virtually all the finan-
cial data of their internal clients, the number of dimensions available for
prediction is naturally large even before any augmentation. After adding
third-party data, either from external data providers, or by adding the
unstructured data acquired from reports or news, the amount of data can
quickly become unwieldy for most methods. Selecting the most important
variables is therefore a necessary step in order to be able to make use of this
data inside models more complex than generalized linear models (glm
s),126 without resorting to the extreme of keeping the rating as unique
variable. Ratings aggregate many completely different companies under a
single general umbrella and do not offer a sufficiently granular view of the
data. By incorporating many more variables, and therefore dimensions, it
should be possible to build individual estimation of the credit risk of each
company, hopefully leading to the construction of better portfolios.

4.7 Proofs
We start by proving auxiliary results necessary for the intermediary proofs
in §4.7.2 as well the main theorem in §4.7.3.

4.7.1 Auxiliary Results
As a first go, we recall or prove various auxiliary results that are involved
in the proof of Theorem 4.1, and in that of Theorem 4.2 as well. The
following inequality follows from the well-known Chernoff bound, (see
e.g. Boucheron, Lugosi, and Massart [2013]).

Lemma 4.3. Let (𝑍𝑖)𝑖≥1 be a sequence of i.i.d. random variables valued
in {0, 1}. Set 𝜇 ≝ 𝑛𝔼[𝑍1] and 𝑆 ≝ ∑

𝑛
𝑖=1 𝑍𝑖. For any 𝛿 ∈ (0, 1) and all 𝑛 ≥ 1,
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we have with probability 1 − 𝛿:

𝑆 ≥ (1 − √2 log(1/𝛿)
𝜇
)𝜇.

In addition, for any 𝛿 ∈ (0, 1) and 𝑛 ≥ 1, we have with probability 1 − 𝛿:

𝑆 ≤ (1 + √3 log(1/𝛿)
𝜇
)𝜇.

Proof. Using the Chernoff lower tail (Boucheron, Lugosi, and Massart
[2013]), for any 𝑡 > 0 and 𝑛 ≥ 1, it holds that

ℙ (𝑆 < (1 − 𝑡)𝜇) ≤ ( exp(−𝑡)
(1 − 𝑡)1−𝑡

)
𝜇
.

Because for any 𝑡 ∈ (0, 1)

exp(−𝑡)
(1 − 𝑡)1−𝑡

≤ exp(−𝑡2/2) ,

we obtain that for any 𝑡 > 0 and 𝑛 ≥ 1,

ℙ (𝑆 < (1 − 𝑡)𝜇) ≤ exp(−𝑡
2𝜇
2
) ,

the bound being obvious when 𝑡 ≥ 1. In the previous bound, choose
𝑡 = √2 log(1/𝛿)/𝜇 to get the stated inequality. The second inequality is
obtained by inverting the Chernoff upper tail:

ℙ (𝑆 > (1 + 𝑡)𝜇) ≤ ( exp(𝑡)
(1 + 𝑡)1+𝑡

)
𝜇
.

The following inequality is a well-known concentration inequality for
sub-Gaussian random variables (see e.g. Boucheron, Lugosi, and Massart
[2013]).

Lemma 4.4. Suppose that 𝑍 is sub-Gaussian with parameter 𝑠2 > 0, i.e. 𝑍
is real-valued, centred and for all 𝜆 > 0

𝔼 [exp(𝜆𝑍)] ≤ 𝔼 [exp(𝜆2𝑠2/2)] ,

then with probability 1 − 𝛿,

|𝑍| ≤ √2𝑠2 log(2/𝛿).
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We shall also need a concentration inequality tailored to vc classes of
functions. The result stated in Lemma 4.5 below ismainly a consequence of
the work of Giné and Guillou (2001). Our formulation is slightly different,
the role played by the vc constants (𝑣 and𝐴 below) being clearly quantified.

Let ℱ be a bounded class of measurable functions defined on 𝒳. Let
𝑈 be a uniform bound for the class ℱ, i.e. |𝑓(𝑥)| ≤ 𝑈 for all 𝑓 ∈ ℱ and
𝑥 ∈ 𝒳. The classℱ is called vc with parameters (𝑣, 𝐴) and uniform bound
𝑈 if

sup
𝑄
𝒩(𝜀𝑈,ℱ, 𝐿2(𝑄)) ≤ (

𝐴
𝜀
)
𝑣
,

where𝒩(., ℱ, 𝐿2(𝑄)) denotes the covering numbers of the classℱ relative
to 𝐿2(𝑄) (see e.g. van der Vaart and Wellner [1996]). For notational
simplicity and with no loss of generality, we require in the definition of
a vc class that 𝐴 ≥ 3√𝑒 and 𝑣 ≥ 1. We take 𝜎2 ≥ sup𝑓∈ℱ𝕍[𝑓(𝑋1)] and
work under the condition

√𝑛𝜎 ≥ 𝑐1√𝑈2𝑣 log(
𝐴𝑈
𝜎𝛿
), (4.13)

where the constants 𝑐1 and 𝑐2 are specified in the following statement.

Lemma 4.5. Let ℱ be a vc class of functions with parameters (𝑣, 𝐴) and
uniform bound 𝑈 > 0 such that 𝜎 ≤ 𝑈. Let 𝑛 ≥ 1 and 𝛿 ∈ (0, 1). There are
two positive universal constants 𝑐1 and 𝑐2 such that, under the condition of
eq. (4.13), we have with probability 1 − 𝛿,

sup
𝑓∈ℱ
|
𝑛

∑
𝑖=1
(𝑓(𝑋𝑖) − 𝔼 [𝑓(𝑋1)])| ≤ 𝑐2√𝑛𝜎2𝑣 log(

𝐴𝑈
𝜎𝛿
).

Proof. Set 𝜆 = 𝑣 log(𝐴𝑈/𝜎). Using Giné and Guillou (2001), equation
(2.5) and (2.6), we get

𝔼[ sup
𝑓∈ℱ
|
𝑛

∑
𝑖=1
(𝑓(𝑋𝑖) − 𝔼 [𝑓(𝑋1)])|] ≤ 𝐶√𝜆 (√𝑛𝜎 + 𝑈√𝜆)

≤ 2𝐶√𝑛𝜎2𝜆,

𝔼[ sup
𝑓∈ℱ
|
𝑛

∑
𝑖=1
(𝑓(𝑋𝑖) − 𝔼𝑓(𝑋1))

2|] ≤ (√𝑛𝜎 + 𝐾𝑈√𝜆)2

≤ 4𝑛𝜎2 ≝ 𝑉,

where 𝐶 > 0 and 𝐾 > 0 are two universal constants. Both previous
inequalities are obtained by taking 𝑐1 large enough. Let

𝑍 = sup
𝑓∈ℱ
|
𝑛

∑
𝑖=1
(𝑓(𝑋𝑖) − 𝔼 [𝑓(𝑋1)])| ,
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We recall Talagrand’s inequality (Talagrand [1996], Theorem 1.4; or Giné
and Guillou [2001], eq. (2.7)), for all 𝑡 > 0,

ℙ (|𝑍 − 𝔼 [𝑍]| > 𝑡) ≤ 𝐾′ exp(− 𝑡
2𝐾′𝑈

log(1 + 2𝑡𝑈
𝑉
)) ,

where 𝐾′ > 1 is a universal constant. Using the fact that for all 𝑡 ≥ 0

𝑡
2 + 2𝑡/3

≤ log(1 + 𝑡) ,

we get

ℙ (|𝑍 − 𝔼 [𝑍]| > 𝑡) ≤ 𝐾′ exp(− 𝑡2

2𝐾′(𝑉 + 2𝑡𝑈/3)
) .

Inverting the bound, we find that for any 𝛿 ∈ (0, 1), with probability 1 − 𝛿,

|𝑍 − 𝔼 [𝑍]| ≤ √2𝐾′𝑉 log(𝐾
′

𝛿
) + 4
3
𝐾′𝑈 log(𝐾

′

𝛿
)

≤ √2𝐾′𝑉𝐾″ log(2
𝛿
) + 4
3
𝐾′𝑈𝐾″ log(2

𝛿
) ,

for some 𝐾″ > 0. Taking 𝑐1 large enough and using that 𝐴𝑈/𝜎 > 2, we
ensure that

2𝑉 = 8𝑛𝜎2 ≥ (4𝑈
3
)
2
𝐾′𝐾″ log(2

𝛿
) .

Then using the previous bound on the expectation, it follows that with
probability 1 − 𝛿,

|𝑍| ≤ 2𝐶√𝑛𝜎2𝜆 + 2√8𝑛𝜎2𝐾′𝐾″ log(2/𝛿)

= 2𝐶√𝑛𝜎2 (√𝜆 + √8𝐾′𝐾″ log(2/𝛿))) .

We then conclude by using the bound√𝑎 + √𝑏 ≤ √2√𝑎 + 𝑏.

4.7.2 Intermediary Results
We now prove some intermediary results used in the core of the proof of
the main results. We first define

𝜏𝑘 = (
2𝑘
𝑛𝑏𝑓𝑉𝑑
)
1/𝑑

.
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Proposition 4.6. Suppose that Assumption 4.1 is fulfilled and that 𝜏𝑘 ≤ 𝜏0.
Then for any 𝛿 ∈ (0, 1) such that 𝑘 ≥ 4 log(𝑛/𝛿), we have with probability
1 − 𝛿:

̂𝜏𝑘(𝑥) ≤ 𝜏𝑘.

Proof. Using Assumption 4.1 yields

ℙ(𝑋 ∈ ℬ(𝑥, 𝜏𝑘)) = ∫
ℬ(𝑥,𝜏𝑘)
𝑔

≥ 𝑏𝑓 ∫
ℬ(𝑥,𝜏𝑘)

d𝜆

= 𝑏𝑓𝑉𝑑𝜏𝑑𝑘

= 2𝑘
𝑛
.

Consider the set formed by the 𝑛 balls ℬ(𝑥, 𝜏𝑘), 1 ≤ 𝑘 ≤ 𝑛. From
Lemma 4.3 with 𝑍𝑖 = 𝟙ℬ(𝑥,𝜏𝑘)(𝑋𝑖), 𝜇 ≥ 2𝑘, and the union bound, we
obtain that for all 𝛿 ∈ (0, 1) and any 𝑘 = 1,…, 𝑛:

𝑛

∑
𝑖=1
𝟙ℬ(𝑥,𝜏𝑘)(𝑋𝑖) ≥ (1 − √

2 log (𝑛/𝛿)
2𝑘
)2𝑘.

As 𝑘 ≥ 4 log(𝑛/𝛿), it follows that

𝑛

∑
𝑖=1
𝟙ℬ(𝑥,𝜏𝑘)(𝑋𝑖) ≥ 𝑘 − (√4𝑘 log(

𝑛
𝛿
) − 𝑘)

≥ 𝑘.

Hence ℙ𝑛(ℬ(𝑥, 𝜏𝑘)) ≥ 𝑘/𝑛, denoting by ℙ𝑛 the empirical distribution of
the𝑋𝑖’s. By definition of ̂𝜏𝑘(𝑥) it holds that ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥).

Define

𝜏𝑘 = (
𝑘
2𝑛𝑈𝑓𝑉𝑑

)
1/𝑑

,

and its neighbourhood

𝑖𝑘(𝑥) = {𝑗 ∶ 𝑋𝑗 ∈ ℬ(𝑥, 𝜏𝑘(𝑥))} .

Proposition 4.7. Suppose that Assumption 4.1 is fulfilled and that 𝜏𝑘 ≤ 𝜏0.
Then for any 𝛿 ∈ (0, 1) such that 𝑘 ≥ 4 log(𝑛/𝛿), we have with probability
1 − 𝛿:

̂𝜏𝑘 ≥ 𝜏𝑘.
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Proof. Using Assumption 4.1 yields

ℙ(𝑋 ∈ ℬ(𝑥, 𝜏𝑘)) = ∫
ℬ(𝑥,𝜏𝑘)
𝑔

≤ 𝑈𝑓 ∫
ℬ(𝑥,𝜏𝑘)

d𝜆

= 𝑈𝑓𝑉𝑑𝜏𝑑𝑘

= 𝑘
2𝑛
.

Consider the set formed by the 𝑛 balls ℬ(𝑥, 𝜏𝑘), 1 ≤ 𝑘 ≤ 𝑛. From
Lemma 4.3 with 𝑍𝑖 = 𝟙ℬ(𝑥,𝜏𝑘)(𝑋𝑖), 𝜇 ≤ 𝑘/2, and the union bound, we
obtain that for all 𝛿 ∈ (0, 1) and 𝑘 = 1,…, 𝑛

𝑛

∑
𝑖=1
𝟙ℬ(𝑥,𝜏𝑘)(𝑋𝑖) ≤

𝑘
2
(1 + √6
𝑘
log(𝑛
𝛿
)) .

Using that 𝑘 ≥ 6 log(𝑛/𝛿), it follows that

𝑛

∑
𝑖=1
𝟙ℬ(𝑥,𝜏𝑘)(𝑋𝑖) ≤ 𝑘 + √

6
4
𝑘 log(𝑛
𝛿
) − 𝑘
2

≤ 𝑘.

Hence ℙ𝑛(ℬ(𝑥, 𝜏𝑘)) ≤ 𝑘/𝑛. By definition of ̂𝜏𝑛(𝑘)(𝑥) it holds that 𝜏𝑘 ≤
̂𝜏𝑘(𝑥).

Proposition 4.8. Suppose that Assumption 4.2 is fulfilled. Then for any
𝛿 ∈ (0, 1), we have with probability 1 − 𝛿:

| ∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝜉𝑖| ≤ √2𝑘𝜎2 log(

2
𝛿
).

where
̂𝚤𝑘(𝑥) = {𝑗 ∶ 𝑋𝑗 ∈ ℬ(𝑥, ̂𝜏𝑘(𝑥))} .

Proof. Set 𝑤𝑖 = 𝟙ℬ(𝑥, ̂𝜏𝑘(𝑥))(𝑋𝑖). Note that ∑𝑛𝑖=1 𝑤
2
𝑖 = 𝑘 almost surely. The

result follows from the application of Lemma 4.4 to the random variable
∑𝑛𝑖=1 𝜉𝑖𝑤𝑖, which is sub-Gaussian with parameter 𝑘𝜎2. To check this, it is



4 Prediction in High Dimension 166

enough to write

𝔼[exp(𝜆
𝑛

∑
𝑖=1
𝜉𝑖𝑤𝑖)] = 𝔼[𝔼[exp(𝜆

𝑛

∑
𝑖=1
𝜉𝑖𝑤𝑖) | 𝑋1,…𝑋𝑛]]

= 𝔼[
𝑛

∏
𝑖=1
𝔼 [exp(𝜆𝜉𝑖𝑤𝑖) ∣ 𝑋1,…𝑋𝑛]]

≤ 𝔼[
𝑛

∏
𝑖=1
𝔼 [exp(𝜆2𝜎2𝑤2𝑖 /2) ∣ 𝑋1,…𝑋𝑛]]

= 𝔼[exp(𝜆2𝜎2
𝑛

∑
𝑖=1
𝑤2𝑖 /2)]

= exp(𝜆2𝜎2𝑘/2) .

Proposition 4.9. Suppose that Assumption 4.1 and Assumption 4.2 are
fulfilled and that 𝜏𝑘 ≤ 𝜏0. Let �̂�𝑖 ≝ ℎ𝑖(𝑋1,…,𝑋𝑛) such that

𝑎𝑘 = sup
𝑖∈𝚤𝑘
|�̂�𝑖| .

Then for any 𝛿 ∈ (0, 1) such that 𝑘 ≥ 4 log(2𝑛/𝛿), we have with probability
1 − 𝛿:

| ∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝜉𝑖ℎ̂𝑖| ≤ √2𝑘𝜎2𝑎2𝑘 log(

4
𝛿
).

Proof. Set 𝑤𝑖 = 𝟙ℬ(𝑥, ̂𝜏𝑘(𝑥))(𝑋𝑖). Note that ∑𝑛𝑖=1 𝑤
2
𝑖 = 𝑘 almost surely. The

result follows from the fact that conditioned upon𝑋1,…,𝑋𝑛, the random
variable ∑𝑛𝑖=1 𝜉𝑖ℎ𝑖𝑤𝑖 is sub-Gaussian with parameter 𝜎2𝑘 ̂𝑎2𝑘 with

̂𝑎𝑘 = sup
𝑖∈𝚤𝑘
|�̂�𝑖| .

To check this, it suffices to write

𝔼[exp(𝜆
𝑛

∑
𝑖=1
𝜉𝑖�̂�𝑖𝑤𝑖) | 𝑋1,…𝑋𝑛] =

𝑛

∏
𝑖=1
𝔼 [exp(𝜆𝜉𝑖�̂�𝑖𝑤𝑖) ∣ 𝑋1,…𝑋𝑛]

≤
𝑛

∏
𝑖=1

exp(𝜆2𝜎2�̂�2𝑖 𝑤2𝑖 /2)

= exp(𝜆2𝜎2
𝑛

∑
𝑖=1
�̂�2𝑖 𝑤𝑖/2)

≤ exp(𝜆2𝜎2𝑘 ̂𝑎2𝑘/2) .
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Then, for any 𝑡 > 0,

ℙ(|
𝑛

∑
𝑖=1
𝜉𝑖ℎ𝑖𝑤𝑖| > 𝑡) ≤ ℙ(|

𝑛

∑
𝑖=1
𝜉𝑖ℎ𝑖𝑤𝑖| > 𝑡, ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥))

+ ℙ ( ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥))

≤ 𝔼[ℙ(|
𝑛

∑
𝑖=1
𝜉𝑖ℎ𝑖𝑤𝑖| > 𝑡 | 𝑋1,…,𝑋𝑛)𝟙 ̂𝜏𝑘(𝑥)≤𝜏𝑘(𝑥)]

+ ℙ( ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥))

≤ 𝔼[2 exp(− 𝑡
2

2𝑘𝜎2 ̂𝑎2𝑘
)𝟙 ̂𝜏𝑘(𝑥)≤𝜏𝑘(𝑥)]

+ ℙ ( ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥))

≤ 2 exp(− 𝑡
2

2𝑘𝜎2𝑎2𝑘
) + ℙ ( ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥)) .

We obtain the result by choosing 𝑡 = √2𝑘𝜎2𝑎2𝑘 log(4/𝛿) and applying
Proposition 4.6 (to obtain that ℙ( ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘(𝑥)) ≤ 𝛿/2).

Proposition 4.10. Suppose that Assumption 4.1 and Assumption 4.4 are ful-
filled. Let 𝜏 > 0, 𝑛 ≥ 1, and 𝛿 ∈ (0, 1) such that 𝜏 ≤ 𝜏0 and 24𝑛𝑈𝑓(2𝜏)𝑑 ≥
log(2𝑑2/𝛿), then with probability 1 − 𝛿,

max
1≤𝑗,𝑗′≤𝑑
|
𝑛

∑
𝑖=1
((𝑋𝑖,𝑗 − 𝑥)(𝑋𝑖,𝑗′ − 𝑥)

⊺𝟙ℬ(𝑥,𝜏)(𝑋𝑖)

− 𝔼 [(𝑋1,𝑗 − 𝑥)(𝑋1,𝑗′ − 𝑥)
⊺𝟙ℬ(𝑥,𝜏)(𝑋1)])|

≤ (2𝜏)2√
2𝑈𝑓𝑛(2𝜏)𝑑

3
log(2𝑑

2

𝛿
).

Proof. We use Bernstein’s inequality: for any collection (𝑍1,…, 𝑍𝑛) of
independent zero-mean random variables such that for all 𝑖 = 1,…, 𝑛,
|𝑍𝑖| ≤ 𝑚 and 𝔼𝑍2𝑖 ≤ 𝑣, it holds that with probability 1 − 𝛿,

|
𝑛

∑
𝑖=1
𝑍𝑖| ≤ √2𝑛𝑣 log(

2
𝛿
) + 𝑚
3
log(2
𝛿
) .

Applying this with

𝑊𝑖 =
(𝑋𝑖,𝑗 − 𝑥)
2𝜏
(𝑋𝑖,𝑗′ − 𝑥)
2𝜏
𝟙ℬ(0,𝜏)(𝑋𝑖),

𝑍𝑖 = 𝑊𝑖 − 𝔼[𝑊𝑖],
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we can use
|𝑍𝑖| ≤ 2 |𝑊𝑖| ≤ 1/4 = 𝑚,

and

𝔼 [(𝑊𝑖 − 𝔼 [𝑊𝑖])2] ≤ 𝔼 [𝑊2𝑖 ]

= 𝔼[|
(𝑋𝑖,𝑗 − 𝑥)
2𝜏
(𝑋𝑖,𝑗′ − 𝑥)
2𝜏
|
2

𝟙ℬ(0,𝜏)(𝑋𝑖)]

= ∫|
(𝑦𝑗 − 𝑥)
2𝜏
(𝑦𝑗′ − 𝑥)
2𝜏
|
2

𝟙ℬ(0,𝜏)(𝑦)𝑓(𝑦) d𝑦

≤ 𝑈𝑓 ∫|
(𝑦𝑗 − 𝑥)
2𝜏
(𝑦𝑗′ − 𝑥)
2𝜏
|
2

𝟙ℬ(0,𝜏)(𝑦) d𝑦

= 𝑈𝑓(2𝜏)𝑑 ∫|𝑢𝑗𝑢𝑗′ |
2 𝟙ℬ(0,1/2)(𝑢) d𝑢

≤ 𝑈𝑓(2𝜏)𝑑 ∫
𝑢2𝑗 + 𝑢2𝑗′
2
𝟙ℬ(0,1/2)(𝑢) d𝑢

= 𝑈𝑓(2𝜏)𝑑 ∫𝑢21𝟙ℬ(0,1/2)(𝑢) d𝑢

= 𝑈𝑓(2𝜏)𝑑 ∫
1/2

−1/2
𝑢21 d𝑢1

=
𝑈𝑓(2𝜏)𝑑

12
≝ 𝑣.

We have shown that, with probability 1 − 𝛿,

|
𝑛

∑
𝑖=1
𝑍𝑖| ≤ √

𝑛𝑈𝑓(2𝜏)𝑑

6
log(2
𝛿
) + 1
12

log(2
𝛿
) .

Because 24𝑛𝑈𝑓(2𝜏)𝑑 ≥ log(2/𝛿), we obtain that

|
𝑛

∑
𝑖=1
𝑍𝑖| ≤ 2√

𝑛𝑈𝑓(2𝜏)𝑑

6
log(2
𝛿
).

Replacing 𝛿 by 𝛿/𝑑2 and using the union bound, we get the desired result.

An important quantity in the framework we develop is

∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑋𝑖,𝑗 − 𝑥𝑗),
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for which we provide an upper bound in the following theorem. Note that
we improve upon the straightforward bound of 𝑘 ̂𝜏𝑘(𝑥) which is unfortu-
nately not enough for the analysis carried out here. We shall work with
the following assumption

𝐶1 log(
𝐷𝑛
𝛿
) ≤ 𝑘 ≤ 𝐶2𝑛, (4.14)

where the two constants 𝐶1 > 0 and 𝐶2 > 0 are given in the following
proposition.

Proposition 4.11. Suppose that Assumption 4.1 and Assumption 4.4 are
fulfilled. Let 𝑛 ≥ 1, 𝑘 ≥ 1 and 𝛿 ∈ (0, 1). There exist universal positive
constants𝐶1,𝐶2, and𝐶3 such that, under eq. (4.14), we have with probability
1 − 𝛿,

max
𝑗=1,…,𝑑
| ∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑋𝑖,𝑗 − 𝑥𝑗)| ≤ 𝐶3 (𝜏𝑘√𝑘 log(

𝑛𝑑
𝛿
) + 𝐿𝑘𝜏

2
𝑘
𝑏𝑓
) .

Proof. Taking 𝐶1 greater than 4, we ensure that 𝑘 ≥ 4 log(2𝑛/𝛿). Taking
𝐶2 small enough, we guarantee that 𝜏𝑘 ≤ 𝜏0. From Proposition 4.6, we
have that ̂𝜏𝑘(𝑥) ≤ 𝜏𝑘 is valid with probability 1 − 𝛿/2. Let

𝜇(𝜏) = 𝔼 [(𝑋1 − 𝑥) 𝟙ℬ(𝑥,𝜏) (𝑋1)] .

Consider the following decomposition

| ∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑋𝑖,𝑗 − 𝑥𝑗)| ≤ | ∑

𝑖∈ ̂𝚤𝑘(𝑥)
((𝑋𝑖,𝑗 − 𝑥𝑗) − 𝜇𝑗 ( ̂𝜏𝑘(𝑥)))| + 𝑛𝜇𝑗 ( ̂𝜏𝑘(𝑥))

≤ sup
0<𝜏≤𝜏𝑘

| ∑
𝑖∈𝑖𝜏(𝑥)
((𝑋𝑖,𝑗 − 𝑥𝑗) − 𝜇𝑗(𝜏))| + 𝑛𝜇𝑗 ( ̂𝜏𝑘(𝑥)) .

where
𝑖𝜏(𝑥) = {𝑗 ∶ 𝑋𝑗 ∈ ℬ(𝑥, 𝜏)} .

Notice that

𝜇(𝜏) = ∫(𝑦 − 𝑥)𝟙ℬ(𝑥,𝜏)(𝑦)𝑓(𝑦) d𝑦

= (2𝜏)1+𝑑 ∫
ℬ(0,1/2)
𝑣𝑓(𝑥 + 𝜏𝑣) d𝑣

= (2𝜏)1+𝑑 ∫
ℬ(0,1/2)
𝑣 (𝑓(𝑥 + 𝜏𝑣) − 𝑓(𝑥)) d𝑣.
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Hence

|𝜇𝑗(𝜏)| ≤
𝐿
2
(2𝜏)2+𝑑 ∫

ℬ(0,1/2)
𝑣𝑗 ‖𝑣‖∞ d𝑣

≤ 𝐿
8
(2𝜏)2+𝑑

= 𝐿
8
(2𝜏)2+𝑑.

And we find

sup
𝑗=1,…,𝑑
|𝜇𝑗( ̂𝜏𝑘)| ≤

𝐿
8
(2𝜏𝑘)2+𝑑

= 𝐿𝑘
𝑏𝑓𝑛
𝜏2𝑘.

The class of rectangles ℛ = {𝑦 ↦ 𝟙ℬ(𝑥,𝜏)(𝑦) ∶ 𝜏 > 0} cannot shatter 2
points 𝑥1 and 𝑥2. Considering the case ‖𝑥1 − 𝑥‖∞ < ‖𝑥2 − 𝑥‖∞, it fails to
pick out 𝑥2. Hence its vc index is 𝑣 = 2. From Theorem 2.6.4 in van der
Vaart and Wellner (1996), we have

𝒩(𝜀,ℛ, 𝐿2(𝑄)) ≤ 𝐾𝑣(4𝑒)𝑣 (
1
𝜀
)
2(𝑣−1)
,

for any probability measure 𝑄. Which therefore implies that

𝒩(𝜀,ℛ, 𝐿2(𝑄)) ≤ (𝐴/𝜀)2 ,

where 𝐴 is a universal constant. As a result, the class

ℱ𝑗 = {𝑦 ↦
(𝑦 − 𝑥𝑗)
𝜏𝑘
𝟙ℬ(𝑥,𝜏)(𝑦) ∶ 𝜏 ∈ (0, 𝜏𝑘]} ,

which is uniformly bounded by 1, satisfies the exact same bound for its
covering number, that is

𝒩(𝜀,ℱ𝑗, 𝐿2(𝑄)) ≤ (
𝐴
𝜀
)
2
.

We can therefore apply Lemma 4.5 with 𝑣 = 2, 𝐴 a universal constant,
𝑈 = 1 and 𝜎2 defined as

𝜎2 ≝ 𝕍[
(𝑋1 − 𝑥)𝑗
𝜏𝑘
𝟙ℬ(𝑥,𝜏)(𝑋1)]

≤ 𝔼[𝟙ℬ(𝑥,𝜏)(𝑋1)]
≤ 𝔼[𝟙ℬ(𝑥,𝜏𝑘)(𝑋1)]

≤
2𝑘𝑈𝑓
𝑛𝑏𝑓

≤ 4𝑘
𝑛
.
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Equation (4.13) is valid under eq. (4.14) when 𝐶1 (resp. 𝐶2) is a large (resp.
small) enough constant. The fact that 𝜎2 ≤ 1 is provided by eq. (4.14) as
well. We obtain that

sup
0<𝜏≤𝜏𝑘

| ∑
𝑖∈𝑖𝜏(𝑥)
((𝑋𝑖,𝑗 − 𝑥𝑗) − 𝜇𝑗(𝜏))| ≤ 𝜏𝑘𝐶√𝑘𝑑 log(

𝑛
𝛿
),

where 𝐶 is a universal constant (𝐶 should be large enough to absorb the
other constants involved until now). Using the union bound, this bound
is extended to a uniform bound over 𝑗 ∈ {1,…, 𝑑}. We then obtain the
statement of the proposition.

4.7.3 Proof of Theorem 4.2
We rely on the bias-variance decomposition expressed in eq. (4.9). On the
first hand, we have

|𝑟𝑘(𝑥) − 𝑟(𝑥)| = |
∑ ̂𝚤𝑘(𝑥)(𝑟(𝑋𝑖) − 𝑟(𝑥))

∑𝑛𝑖=1 𝟙ℬ(𝑥, ̂𝜏𝑘(𝑥))(𝑋𝑖)
|

≤ sup
𝑦∈ℬ(𝑥, ̂𝜏𝑘(𝑥))

|𝑟(𝑦) − 𝑟(𝑥)|

≤ 𝐿1 ̂𝜏𝑘(𝑥).

Applying Proposition 4.6 we obtain that, with probability 1 − 𝛿/2,

|𝑟𝑘(𝑥) − 𝑟(𝑥)| ≤ 𝐿1𝜏𝑘.

On the other hand, we apply Proposition 4.8 to get that, with probability
1 − 𝛿/2,

| ̂𝑟𝑘(𝑥) − 𝑟𝑘(𝑥)| ≤ √
2𝜎2 log(4/𝛿)
𝑘
.

4.7.4 Proof of Theorem 4.1
Denote by𝕏 the design matrix of the (local) regression problem

𝕏 = (𝑋⊺𝑖1 ,…,𝑋
⊺
𝑖𝑘 )
⊺,

𝕐 = (𝑦⊺𝑖1 ,…, 𝑦
⊺
𝑖𝑘 )
⊺.

where for any 𝑗 = 1,…, 𝑘, 𝑖𝑗 is such that𝑋𝑖𝑗 ∈ ℬ(𝑥; ̂𝜏𝑘(𝑥)). Define

𝑤 = 𝕐 − 𝕏𝛽∗,

�̂� = ̂𝛽𝑘(𝑥) − 𝛽∗.
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Following Hastie, Tibshirani, and Wainwright (2015), define

𝒞(𝑆, 𝛼) = {𝑢 ∈ ℝ𝑑 ∶ ‖𝑢𝑆‖1 ≤ 𝛼 ‖𝑢𝑆‖1} .,

and let ̂𝛾𝑛 be defined as

̂𝛾𝑛 = inf
𝑢∈𝒞(𝑆,3)

‖𝕏𝑢‖22
𝑘 ‖𝑢‖22
.

Hence, ̂𝛾𝑛 is the smallest eigenvalue (restricted to the cone) of the design
matrix𝕏. From Lemma 11.1 in Hastie, Tibshirani, and Wainwright (2015),
we have the following: whenever

𝜆 ≥ 2
𝑘
‖𝕏⊺𝑤‖∞ ,

it holds that

�̂� ∈ 𝒞(𝑆, 3),

‖�̂�‖2 ≤ 3𝜆
√|𝒮𝑥|
̂𝛾𝑛
.

Consequently, the proof will be completed if, with probability 1 − 𝛿,

2
𝑘
‖𝕏⊺𝑗𝑤‖∞ ≤ 𝜏𝑘(

√2𝜎
2 log(16𝑑/𝛿)
𝑘

+ 𝐿2𝜏2𝑘) , (4.15)

̂𝛾𝑛 ≥
𝜏2𝑘
24 × 8
. (4.16)

Proof of eq. (4.15). In the next few lines, we show that eq. (4.15) holds
with probability 1 − 𝛿/2. By definition

𝕏⊺𝑤 = ∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝑤⊺𝑖𝑋
⊺
𝑖 ,

Using that 𝑤𝑖 = 𝜉𝑖 + 𝑟(𝑋𝑖) − 𝛽⋆
⊺𝑋𝑖,

𝕏⊺𝑤 = ∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝑋⊺𝑖 𝜉𝑖 + ∑

𝑖∈ ̂𝚤𝑘(𝑥)
𝑋⊺𝑖 (𝑟(𝑋𝑖) − 𝛽⋆

⊺𝑋𝑖)

= ∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝑋⊺𝑖 𝜉𝑖 + ∑

𝑖∈ ̂𝚤𝑘(𝑥)
𝑋⊺𝑖 (𝑟(𝑋𝑖) − 𝑟(𝑥) − 𝛽⋆

⊺(𝑋𝑖 − 𝑥)) ,

where we have used the covariance structure (with empirically centred
terms) to derive the last line. Note that for any 𝜏 > 0,max𝑖∶𝑋𝑖∈ℬ(𝑥,𝜏)|𝑋

⊺
𝑖,𝑗| ≤
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𝜏. Hence, from Proposition 4.9, because 𝜏𝑘 ≤ 𝜏0 and 𝑘 ≥ 4 log(8𝑑𝑛/𝛿)
(taking 𝐶1 large enough), we have with probability 1 − 𝛿/(4𝑑),

| ∑
𝑖∈ ̂𝚤𝑘(𝑥)
𝑋⊺𝑖,𝑗𝜉𝑖| ≤ √2𝑘𝜎2𝜏2𝑘 log(

16𝑑
𝛿
).

Moreover,

∑
𝑖∈ ̂𝚤𝑘(𝑥)
|𝑋⊺𝑖,𝑗| × |𝑟(𝑋𝑖) − 𝑟(𝑥) − 𝑔(𝑥)

⊺ (𝑋𝑖 − 𝑥)| ≤ 𝑘𝐿2 ̂𝜏𝑘(𝑥)2 max
𝑖∈ ̂𝚤𝑘(𝑥)
|𝑋⊺𝑖,𝑗|

≤ 𝑘𝐿2 ̂𝜏𝑘(𝑥)3.

Using Proposition 4.6, because 𝑘 ≥ 4 log(4𝑑𝑛/𝛿), it holds, with probability
1 − 𝛿/(4𝑑),

∑
𝑖∈ ̂𝚤𝑘(𝑥)
|𝑋⊺𝑖,𝑗| × |𝑟(𝑋𝑖) − 𝑟(𝑥) − 𝛽⋆

⊺ (𝑋𝑖 − 𝑥)| ≤ 𝑘𝐿2𝜏3𝑘.

We finally obtain that for any 𝑗 = 1,…, 𝑑, it holds, with probability 1 −
𝛿/(2𝐷),

|𝕏⊺𝑗𝑤| ≤ √2𝑘𝜎2𝜏2𝑘 log(
16
𝛿
) + 𝑘𝐿2𝜏3𝑘,

and from the union bound, we deduce that, with probability 1 − 𝛿/2,

max
𝑗=1,…,𝑑
|𝕏⊺𝑗𝑤| ≤ 𝜏𝑘 (√2𝑘𝜎2 log(

16𝑑
𝛿
) + 𝑘𝐿2𝜏2𝑘) .

Proof of eq. (4.16). We show that eq. (4.16) holds with probability 1−𝛿/2.
Define

�̂�𝑘 = ∑
𝑖∈𝑖𝑘(𝑥)
(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)

⊺,

�̂�(𝜏) = ∑
𝑖∈𝑖𝜏(𝑥)
(𝑋𝑖 − 𝑥).

First, note that

𝕏⊺𝕏 = ∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑋𝑖 − 𝑥)(𝑋𝑖 − 𝑥)

⊺ − 1
𝑘
�̂�( ̂𝜏𝑘)�̂�( ̂𝜏𝑘)

⊺.

Then, using Proposition 4.7, because 𝑘 ≥ 4 log(4𝑛/𝛿), with probability
1 − 𝛿/4, ̂𝜏𝑘(𝑥) ≥ 𝜏𝑘, implying that

𝕏⊺𝕏 ≥ �̂�𝑘 −
1
𝑘
�̂�( ̂𝜏𝑘)�̂�( ̂𝜏𝑘)

⊺

= 𝔼 [�̂�𝑘] + (�̂�𝑘 − 𝔼 [�̂�𝑘]) −
1
𝑘
�̂�( ̂𝜏𝑘)�̂�( ̂𝜏𝑘)

⊺.
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Let 𝑢 ∈ ℝ𝑑. We have that

|𝑢⊺�̂�( ̂𝜏𝑘)|
2 ≤ ‖𝑢‖21 max

𝑗=1,…,𝑑
|(�̂�( ̂𝜏𝑘))𝑗|

2

≤ |𝒮𝑥| × ‖𝑢‖22 max
𝑗=1,…,𝑑
|(�̂�( ̂𝜏𝑘))𝑗|

2 .

Similarly, we have:

|𝑢⊺ (�̂�𝑘 − 𝔼 [�̂�𝑘]) 𝑢| ≤ ‖𝑢‖21 × ‖�̂�𝑘 − 𝔼 [�̂�𝑘]‖∞
≤ |𝒮𝑥| × ‖𝑢‖22 ‖�̂�𝑘 − 𝔼 [�̂�𝑘]‖∞ .

Using the variable change 𝑦 = 𝑥 + 2𝜏𝑘𝑣 and that 𝜏𝑘 ≤ 𝜏0, we have that

𝔼 [�̂�𝑘] = 𝑛𝔼 [(𝑋1 − 𝑥)(𝑋1 − 𝑥)
⊺𝟙ℬ(𝑥,𝜏𝑘)(𝑋1)]

= 𝑛∫(𝑦 − 𝑥)(𝑦 − 𝑥)⊺𝟙𝑦∈ℬ(𝑥,𝜏𝑘)𝑓(𝑦) d𝑦

≥ 𝑛𝑏𝑓 ∫(𝑦 − 𝑥)(𝑦 − 𝑥)
⊺𝟙𝑦∈ℬ(𝑥,𝜏𝑘) d𝑦

= 𝑛(2𝜏𝑘)
2+𝑑𝑏𝑓 ∫

𝑣∈ℬ(0,1/2)
𝑣𝑣⊺ d𝑣

= 𝑛(2𝜏𝑘)
2+𝑑𝑏𝑓 (∫

1/2

−1/2
𝑣21 d𝑣1) 𝐼𝑑

=
𝑏𝑓
12
𝑛(2𝜏𝑘)

2+𝑑𝐼𝑑

=
𝑏𝑓
6𝑈𝑓
𝜏2𝑘𝑘𝐼𝑑

≥
𝜏2𝑘𝑘
12
𝐼𝑑,

using that 𝑈𝑓/𝑏𝑓 ≤ 2. Consequently,

‖𝕏𝑢‖22
‖𝑢‖22
≥
𝜏2𝑘𝑘
12
− |𝒮𝑥| (‖�̂�𝑘 − 𝔼 [�̂�𝑘]‖∞ +

1
𝑘

max
𝑗=1,…,𝑑
|(�̂�( ̂𝜏𝑘))𝑗|

2) .

Proposition 4.10 can be applied because

24𝑛𝑈𝑓(2𝜏𝑘)
𝑑 = 12𝑘

≥ log(16𝑑
2

𝛿
) ,

which is satisfied whenever 𝐶1 is large. Combined with Proposition 4.11
(our conditions ensure that eq. (4.14) is satisfied), we obtain that, with
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probability 1 − 𝛿/4,

‖𝕏𝑢‖22
‖𝑢‖22
≥
𝜏2𝑘𝑘
12
− |𝒮𝑥| (4𝜏2𝑘√

𝑘
3
log(16𝑑

2

𝛿
)

+ 2𝐶2 (𝜏2𝑘 log(
8𝑛𝑑
𝛿
) + 𝐿
2𝑘𝜏4𝑘
𝑏2𝑓
))

≥ 𝜏
2
𝑘𝑘
24 × 8
(2 − |𝒮𝑥| 𝐶3 (√

1
𝑘
log(𝑛𝑑
𝛿
) + 1
𝑘
log(𝑛𝑑
𝛿
) + 𝜏
2
𝑘𝐿2

𝑏2𝑓
)) ,

where 𝐶 > 0 is a universal constant. To obtain the last inequality we use
𝜏𝑘 = 𝐶

1/𝑑
𝑓 𝜏𝑘 with 𝐶𝑓 ≤ 8, we choose 𝐶3 > 0 large enough and 𝐶2 > 0

small enough. Choose 𝐶1 large enough to get that

𝐶3 |𝒮𝑥| √
log (𝑛𝑑/𝛿)
𝑘
≤ 1
3
,

𝐶3 |𝒮𝑥|
log(𝑛𝑑/𝛿)
𝑘
≤ 1
3
.

Finally, we obtain the desired result by noting that

𝐶3 |𝒮𝑥|
𝜏2𝑘𝐿2

𝑏2𝑓
≤ 1
3
.

4.7.5 Proof of Theorem 4.2
We rely on the bias-variance decomposition expressed in eq. (4.9). On the
first hand, we have

|𝑟𝑘(𝑥) − 𝑟(𝑥)| = |
∑𝑖∈ ̂𝚤𝑘(𝑥)(𝑟(𝑋𝑖) − 𝑟(𝑥))

∑𝑛𝑖=1 𝟙ℬ(𝑥, ̂𝜏𝑘(𝑥))(𝑋𝑖)
|

≤ sup
𝑦∈ℬ(𝑥, ̂𝜏𝑘(𝑥))

|𝑟(𝑦) − 𝑟(𝑥)|

≤ 𝐿1 ̂𝜏𝑘(𝑥).

Applying Proposition 4.6 we obtain that, with probability 1 − 𝛿/2,

|𝑟𝑘(𝑥) − 𝑟(𝑥)| ≤ 𝐿1𝜏𝑘.

On the other hand, we apply Proposition 4.8 to get that, with probability
1 − 𝛿/2,

| ̂𝑟𝑘(𝑥) − 𝑟𝑘(𝑥)| ≤ √
2𝜎2 log(4/𝛿)
𝑘
.



4 Prediction in High Dimension 176

Choose 𝐶1 large enough to get that

𝐶 |𝒮𝑥| √log(
2𝑑
𝛿
) ≤
√𝑘
3

𝐶 |𝒮𝑥| 𝑑 log(
2𝑛𝑑
𝛿
) ≤ 𝑘
3

Finally, we obtain the result of interest after noting that

𝐶 |𝒮𝑥| 𝜏2𝑘𝐿2 ≤
𝑏2𝑓
3
.



128: The earliest recorded finan-
cial derivative is due to Thales of
Miletus in 600 BCE, of Thales’s
theorem fame, who sold a future
contract on olives. Thus effec-
tively making Thales the first
known derivative trader.

129: A security roughly refer
to any tradable and fungible
financial instrument.

Survival Analysis for Securitization 5
5.1 Introduction
We have seen in §1.1 that nowadays, one of the most important metric a
bank has to monitor is the rwa as it directly relates to the capital required
and therefore the amount of “dead” assets that do not bring any revenues.
While the ability to more accurately estimate 𝑝, instead of relying on the
rough and very conservative standard models, already brings a regulatory
reduction of the rwa by virtue of being a more accurate and lower estimate
of the probability of default, it is not sufficient.

Fortunately, it is possible to significantly lower the rwa of the bank even
further through the use of active management, which is the primary role
of the Portfolio Management team of BNP Paribas. Remember that the
rwa is a measure of the proportion of risky assets in the portfolio of BNP
Paribas, as such a simple way of lowering the rwa is simply not to have
those assets in the portfolio of the bany anymore. The vast majority of
financial products exist as a way to transfer risk128 to other parties who
may, because of their risk profile, be indifferent to it and wishing to in
exchange be rewarded financially for it. It is therefore desirable in order
to reduce the risk of the bank to transfer that risk to somebody else which
morally entails selling the credit, i.e. a random value with a variable payoff,
to a third party in exchange of a fair deterministic price. We will not
discuss here what a fair price is but for the sake of illustration it is possible
to imagine it as the expected value of the payoff under some measure. Of
course a single credit is not very appealing as it is, by definition, risky and
it is difficult to find a buyer for it, at least for an acceptable price. But
BNP Paribas has many such credits in its portfolio and is therefore in the
position to sell those as a packaged product with lower risk. Such products,
usually called asset based security (abs),129 are constructed from a pool
of credit and, under the assumption that the assets that compose it are
not all correlated, will have a lower risk and therefore lower price. Simply
put, from the stock of credits 𝑐𝑖 in BNP Paribas’ portfolio, a product of the
form 𝑛

∑
𝑖=1
𝜔𝑖𝑐𝑖,

177
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Figure 5.1: Tranche structure of
an abs

130: A derivative in the financial
world refers to a product con-
structed as a function 𝑃(𝐸(𝑡)) of
some underlying asset 𝐸(𝑡).

where 𝜔𝑖 is a set of weights between 0 and 1, is sold to investors, effec-
tively eliminating the rwa corresponding to the portion of the assets sold.
In practice, those securitized portfolios sold as abs involve additional
complexities both in the type of assets allowed and the payout structure
in order to further satisfy the varied levels of risk appetite of investors.
From the simple product presented earlier, more complex derivatives are
constructed with different levels of risk and remuneration through an op-
eration known as tranching . When the product start experiencing defaults,
and therefore incurring losses, instead of distributing the loss uniformly
amongst investors, the loss is instead applied by the order of seniority, with
the equity tranche incurring the losses first until it is completely wiped
out, and repeating the process for the later tranches as illustrated in fig. 5.1.
While it would in theory be possible to create specific portfolios meeting
the required risk profile of each investor, it is preferable for purely logistical
reasons to create a single portfolio which is then used as a basis for more
complex derivatives.130

Given the strategic importance for a bank of securitization of credit
portfolios, i.e. mathematical objects that entirely rely on the estimation
of some probability of default for their pricing, it is crucial to be able to
correctly model the default events to guide the construction and pricing
of these portfolios.

About this Section
The rest of this chapter is in large part composed of examples inspired
by applications at BNPParibas but not onBNPParibas data for reasons
of ease of access to data, confidentiality as well as reproducibility.
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131: From a pure expectation
point of view, extremely volatile
assets are equivalent to non-risky
assets, which intuitively feels
wrong. It is possible to derive
a more grounded approach by
defining the notion of utility (see
Markowitz [1952b,a]).

5.2 Portfolio Optimization by Simulation
In chapter 3 we have introduced a flexible estimator of the survival dis-
tribution and insisted on the usefulness of a generative model without
much more elaboration on the possible applications. We will show here
one such application. One significant advantage of our method is the abil-
ity to efficiently generate samples of 𝑌, the duration of interest; enabling
the possibility to estimate higher order statistics that may depend on 𝑌
through a non-trivial process. We present here a toy example designed to
mimic the process of securitization in order to motivate this characteristic.

We consider a synthetic dataset of financial entities representing a credit
portfolio. For each client 𝑖 and covariate𝑋𝑖 it is possible to buy an insur-
ance, potentially on a fraction 𝜔𝑖, of duration 𝑑𝑖 which is the maximum
protection time of the insurance, for a total price 𝑐𝑖. If the client defaults
during the contract duration that is 𝑌𝑖 ≤ 𝑑𝑖, then the default with loss 𝑙𝑖 is
entirely covered. We can therefore define the portfolio loss as

𝐿(𝜔) =
𝐾

∑
𝑖=1
𝜔𝑖(𝑙𝑖𝟙𝑌𝑖≤𝑑𝑖 − 𝑐𝑖). (5.1)

From the perspective of the client, an optimal portfolio is one that mini-
mizes the potential losses or equivalently maximizes the potential gains.
Of course we could minimize 𝐿(𝜔) in expectation directly but not only is
the expectation exactly 0 as this is how the prices 𝑐𝑖 are constructed here,
but the expected value is often an imperfect metric from the point of view
of investors as it does not incorporate any notion of risk.131 We therefore
want tominimize somemetric of the risk incurred, of whichmany variants
exist. We chose here to optimize the expected shortfall, defined in terms of
expected quantiles by

ES𝛼(𝜔) = ∫
𝛼

−∞
𝐹−1𝐿(𝜔)(𝛾) d𝛾, (5.2)

as it relates to the often-used value-at-risk (var), i.e. quantile of level
𝛼, and possesses several qualities of interest. More precisely, unlike the
var, the expected shortfall is a convex and coherent risk measure, that
is a monotonous, sub-additive, homogeneous and translationally invari-
ant function. These characteristics not only make the expected shortfall
a proper risk measure the of econometrics and microeconomics sense
(Artzner et al. [1999]) but more importantly in our specific case a function
that can be optimized exactly. Thismeasure is equivalent in the continuous
case to the tail conditional expectation and can be seen as minimizing the
expected extremal losses as seen in fig. 5.2. This objective is also desirable in
many other fields such as predictive maintenance or industrial reliability,
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Figure 5.2: Expected Shortfall
and Value at Risk of a loss distri-
bution.

132: The operation [⋅]+ can
be rewritten in term of linear
constraints and the problem stays
linear overall.

where minimizing the extreme defects is of particular interest. Not only
the previous quantity can be estimated by Monte Carlo simulations using
the normalizing flow learned by our method, but it is also possible to di-
rectly minimize the previous quantity by solving the convex optimization
program

argmin
𝜔
∫
𝛼

−∞
𝐹−1𝐿(𝜔)(𝛾) d𝛾, (5.3)

which can be rewritten as a linear optimization program132 (see Rockafellar
and Uryasev [2002]), if we add constraints on the size of the portfolio 𝑃 as
well as the size of the positions:

argmin
𝜔,𝛽
𝛽 + 1
1 − 𝛼
∫[𝐿(𝜔) − 𝛽]+ 𝑝𝐿(𝑦) d𝑦

s.t. 0 ≤ 𝜔 ≤ 1
𝜔⊺𝑐 = 𝑃.

(5.4)

For simplicity we set here all durations to the same value 𝑑𝑖 = 𝑑 as well as
losses 𝑙𝑖 = 1, and generate default events according to a simplified version
of the law introduced here in §3.6.1: we sample 10 base feature vector, after
which the 10 resulting vectors are perturbed to form 200 feature vectors,
that is

�̃�𝑘 ∼ 𝒰([0, 1]10)
𝜀𝑖 ∼ 𝒩(0, 𝕀10)
𝑋𝑖 = �̃�𝑘mod 10 + 0.1𝜀𝑖.

The times to defaults and censoring variables themselves still follow the
model given previously in §3.6. This simplified model represents the
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usually assumed classes of risk, such as industries, countries or intrinsic
rating, which are often assumed to be similar in terms of default. Prices
are chosen as fair prices i.e. as the prices necessary to mitigate the expected
losses 𝑐𝑖 = 𝔼[𝟙𝑌𝑖≤𝑑𝑖 ]. For the pricing we use separate Weibull models
learned independently for each 𝑘 ∈ [1,…, 10], a common practice in
credit rating. We then minimize eq. (5.4) using the reference Weibull
models and our model as estimators of the distribution of defaults. The
real value of the minimum obtained by both methods is then measured
using the true unknown distribution to compute the true realized losses of
the portfolio, as we know in this case what the true distribution is which
is, of course, not the case in practice.

The true expected shortfall of the standard optimal portfolio is 8.1452
while the optimal portfolio formed using the survival flow estimates
achieves an expected shortfall of −0.314, which translates into an eco-
nomic gain in this scenario. Purely on this metric, the more granular and
accurate samples from the normalizing flow model results in a signifi-
cantly better value of the objective. While the expected shortfall is a good
objective with interesting mathematical characteristics as well as a real
economic interpretation, investors are in the end interested in the real
possible returns. As seen in fig. 5.3, the potential losses from the optimal
portfolio obtained by means of minimizing the expected shortfall derived
from the reference distribution, i.e. the distribution used for the pricing,
are significantly higher than those obtained using samples from a normal-
izing flow based estimate of the survival distribution. In this toy example,
we clearly observe better losses (or gains depending on the point of view)
when sampling from the survival flow distribution.

While a purely synthetic toy problem, this serves as an example of how a
better estimator of the survival distribution than those generally in use in
banking institutions can help construct significantly better portfolios that
should also perform better during periods of intense stress by abandoning
the potentially damaging hypothesis of independence between companies.
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133: Often sovereign.

5.3 Deep Bayesian Survival Analysis
The previous example, while a good motivation for better estimators of
the survival, is however mostly a worthwhile exercise from the point of
view of the buyer and not the originator of the securitization portfolio,
BNP Paribas.

As eluded earlier, BNP Paribas is able to leverage its extensive portfolio
to construct products satisfying the needs of their clients, which taking the
optimization view of eq. (5.4), entails adding constraints to match the risk
profile of the potential clients. One usual limitation that, however, greatly
hinders the potential rwa savings of BNP Paribas by limiting its ability to
sell part of its portfolio is the limitation of permissible ratings. While the
very act of securitization is meant to limit risk of the overall portfolio, most
clients still demand that the portfolio only contains highly rated and low-
risk assets, making it impossible to sell the more average and moderately
risky assets. Given the limited pool of highly rated companies and the
required size of the overall portfolio, the only solution in order to satisfy all
client and regulator constraints is to incorporate a very significant fraction
of the few but large lines of credits from highly rated133 clients. One side
effect of these constraints being that fewer large clients are included instead
of a multitude of smaller ones, thus effectively reducing the diversification
of the resulting portfolio and increasing the overall risk. Worse, given
the size of the credit lines involved, the risk is increased in the tail of
the distribution of the losses and therefore represents an unacceptable
stress scenario, all while paradoxically bringing very little profits to the
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Figure 5.4: Several Beta distribu-
tions.

buyers as the prices are calculated from the ratings that compose the
portfolio. In order to convince the potential clients to review their policy
concerning middle-of-the-road ratings, it is possible to build a model
that incorporates the uncertainty on the ratings and show that given this
uncertainty it is recommended to diversify the allowed ratings in order to
reduce the heaviness of the tail of the distribution.

We first start by modelling the distribution of the true probabilities of
defaults given the ratings in order to show that good ratings are highly
uncertain in their estimation, given the very few observations of defaults. A
goodway of incorporating uncertainty in the estimation of the probabilities
of defaults for each rating is simply to treat those as random variables, in a
Bayesian setting. This also enables us to introduce additional knowledge in
the priors and model in order to alleviate the problem of few observations.
Instead of determining the probability of defaults of each rating by simply
taking

𝑝𝑖 =
𝑑𝑖
𝑛𝑖
,

where 𝑑𝑖 is the number of ratings 𝑖which defaulted and 𝑛𝑖 the total number
of assets of ratings 𝑖 in the portfolio, we can instead treat each 𝑝𝑖 as a
random variable such that,

𝛼𝑖 ∈ ℝ+, 𝛽𝑖 ∈ ℝ+
𝑝𝑖 ∼ Beta(𝛼𝑖, 𝛽𝑖)
𝑑𝑖 ∼ Binomial(𝑛𝑖, 𝑝𝑖).

However, as the good ratings generally never see any defaults, and there-
fore more often than not are all equals to a probability of 0most years, it
is not rare that by pure chance no defaults happen for the ratings 3 and
4 but a single one does for the rating 2, for example. In those cases a
naive estimation would result in believing that the probability of default is
higher for the ratings 2 than 3 and 4. If we, however, make the assumption
that the analysts in charge of the ratings are actually correct, which seems
more likely than the ratings being the complete opposite of reality, we can
instead force into the model the assumption that the ratings are strictly
increasing by modelling them as such, e.g.:

𝛼 ∈ ℝ𝐾+
Δ𝑝 ∼ Dirichlet(𝛼)

𝑑𝑖 ∼ Binomial(𝑛𝑖,∑
𝑖
𝑗=1
Δ𝑝𝑗) .

The previous example was applied on BNP Paribas’ internal data in order
to show that the uncertainty in the estimation of the probability of the
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Figure 5.5: Posterior distribution
of the probabilities of defaults.

good ratings was too high to be useful for the derivation of strict guidelines.
In fig. 5.5 we give the results for the first 7 aggregated ratings, that is we
aggregate R - , R and R + into a single rating R , and we clearly see the posterior
distributions of the possible probabilities of default overlap nearly entirely
for the first few ratings. Given how few observations we have available
for estimation, and therefore how spread the posterior distributions are,
it is dubious to arbitrarily decide that ratings 1–3 are good and 4 is not.
From these posterior distributions, it is then possible to proceed as in
§5.2 in order to derive an optimal portfolio which takes into account the
uncertainty around the estimated probabilities of defaults by solving the
problem with the business constraints incorporated, i.e.

argmin
𝛽,𝜔

𝛽 + 1
𝑛(1 − 𝛼)

𝑛

∑
𝑖
[𝜔𝑖(𝑠𝑖𝑒𝑖 − 𝑐𝑖) − 𝛼]+

𝜔⊺𝑐 = 𝑃
𝜔𝑖𝑐𝑖 ≥ 30𝑠𝑖
𝜔 ≤ 𝛿
𝑠 ∈ {0, 1}𝐾

(5.5)

where the constraint 𝜔𝑖𝑐𝑖 ≥ 30𝑠𝑖 encodes the fact that we only want to
add an element to the portfolio if the total contribution is large enough
to justify the fixed cost of doing so. Because of the introduction of the
binary variables 𝑠𝑖, the problem is not linear anymore but instead a mixed
integer linear programming (milp) problem which, while harder to solve,
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is still tractable. Unsurprisingly, as it is what we set out to show, we see in
fig. 5.6 that the composition of the portfolio is heavily weighted toward the
more average ratings as their true probability of default is better estimated
and their number and diversity makes it easier to assemble a low-risk
portfolio. More importantly from the point of view of BNP Paribas, we see
in fig. 5.7 that this results in most of the existing stock of assets rated worse
than 3 being securitized and sold, with the reduction in rwa it entails.
While interesting, the previous approache still relies on transforming the
problem of estimating defaults into a binary classification problem, which
is exactly what we set out to not do by reframing it as a time-to-event
prediction problem in the rest of this manuscript. The Bayesian modelling
approach presented earlier is appealing because it gives us the ability to
easily obtain uncertainty estimates as well as make efficient use of the data
by incorporating as much knowledge as possible through a careful choice
of priors as well as by hierarchically pooling the parameters. This approach
is still possible for survival regression: in chapter 3 we introduced survival
normalizing flows, a generative model of the time-to-event with a tractable
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likelihood and, incidentally, the ability to sample as well as to compute the
likelihood are the only two requirements for Markov chain Monte Carlo
(mcmc) estimation of Bayesian models to be possible.

In the credit setting, it is usual to develop different but relatedmodels for
each industry category or jurisdiction in order to predict the probability of
default, as two companies with otherwise identical characteristics𝑋may
havewildly different default behaviours due to idiosyncrasies in their sector
or country of residence. Thenaive approach to the estimation of𝐾 different
distributions of time-to-events of these 𝐾 specific subpopulations results
in suboptimal results as the effective sample size available for training is
drastically reduced. We can, however, make the hypothesis that inside
those subpopulations the different distributions of time-to-events are fairly
similar and share most of their characteristics and parameters. While it
would be possible, as is often done in deep learning, to treat the problem as
a multi-task learning problem with hard-sharing of the first few layers of
the neural networks parametrizing the flows, we can instead use the well-
principled approach of multilevel hierarchical modelling (Gelman [2006];
Raudenbush [1988]). In chapter 3 we modelled the time to event 𝑌 of the
population 𝑖 as following some distribution parametrized by a normalizing
flow itself parametrized by a fixed 𝜃𝑖,

𝑌 ∣ pop 𝑖 ∼ NF(𝜃𝑖).

Instead, we can treat 𝜃𝑖 as some unknown observation from a prior dis-
tribution, such that all the 𝜃𝑖 share information through their common
latent distribution, that is

𝜃𝑖 ∼ 𝒩(𝜇, Σ)
𝑌 ∣ pop 𝑖 ∼ NF(𝜃𝑖).

The same is, of course, also possible when conditioned on𝑋

𝜃𝑖 ∼ 𝒩(𝜇, Σ)
𝑌 ∣ 𝑋, pop 𝑖 ∼ NF(𝜃𝑖, 𝑋).

This hierarchical approach is particularly interestingwhen each population
taken independently has too few observations for an accurate estimator
to be trained. This is for example the case when expanding into new
markets: mostly similar data is already available for the markets where
the bank already has an historical presence but only a few observations
of the new market exist for the first few months or years. On one hand,
there are not enough points to train a new model while, on the other hand,
reusing models trained on different populations is not recommended as
the distributions do not have any reason to be exactly the same. The
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assumption that the distributions are similar is, however, fairly sensible
and it makes sense to reuse past observations as prior knowledge for our
new model.

5.4 Conclusion
The ability to estimate the conditional probability of default or, even better,
the distribution of the time-to-defaults is crucial to the correct operation
of a bank such as BNP Paribas. The probability of default is used to define
internal ratings, to decide whether to accept or not loan applications, to
price products ranging from simple insurances to complex derivatives
or to estimate counterparty risk and much more. In this last chapter, we
have chosen not to give any example of these problems of estimation of a
time-to-event in the specific setting of finance as those problems, except
for the name of the event, match exactly the examples one can find in
the medical or industrial world and described at length in chapters 2 to 4.
Securitization, however, is a very specific financial application and the core
competency of the Portfolio Management team at BNP Paribas. Given the
ever-increasing regulatory requirements of each new basel framework,
the need to reduce rwa has increased significantly and, in many ways, is
now a more important metric to the bank that the economic gain itself. In
order to survive, banks have to drastically change their operating model
and improve their capability to estimate credit risk and perform stress tests.
Regulators are not satisfied with simply meeting capital requirements any-
more and increasingly demand proofs through stress tests of the resilience
of banks and other financial actors to adverse financial conditions. As
such, generative models which were once seen as an expensive bonus, are
now crucial tools necessary to the day-to-day operation of a bank. We
have presented in this chaper several applications of generative models,
either alone or part of a more complex Bayesian framework, and shown
how these models can be exploited to improve every step of the decision
process of a portfolio management and securitization team. Thanks to new
performant tools for probabilistic programming (Salvatier, Wiecki, and
Fonnesbeck [2016]; Ge, Xu, and Ghahramani [2018]; Cusumano-Towner
et al. [2019]) and abundant compute power, generative methods are now
in reach of most practitioners. Adapting recent advances such as diffu-
sion models (Nichol and Dhariwal [2021]) to the survival setting therefore
seems a worthwhile effort.
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Predicting the time until an event happens, or time-to-event, is a funda-
mental problem in many fields such as medicine, reliability theory, and
finance. Despite the apparent simplicity of the task: regressing a positive
random variable 𝑌; the subject quickly proves to be complicated by the
presence of censoring i.e. the inability to completely observe the variable
𝑌 and instead only observemin(𝑌, 𝐶) and 𝟙𝑌≤𝐶, a partial observation and
a censoring indicator. Given the wide range of important, and in many
case life saving, applications; survival analysis has given rise to an impres-
sive and wide-ranging body of research, spearheaded by the statistical
community.
In this thesis we presented a different theoretical approach to survival anal-
ysis through the scope of machine learning and more precisely the erm
approach. We showed how, through a relatively simple in practice reweigh-
ing of the observations, it is possible to adapt the erm objective in order to
deal with the presence of censoring. We then derived nonasymptotic and
nonparametric upper bounds on the excess risk that match the bounds one
can obtain without censoring. Not only do those theoretical results justify
reusing many powerful regression methods from the machine learning
literature, but we also showed empirically that this approach manages
to match or even beat the state-of-the-art in survival analysis when the
task of interest is purely predictive; which is increasingly the case with
the democratization of machine learning in the industry. Some interro-
gations on the method, however, do remain: as our loss is now estimated
and depends on the choice of some hyperparameters itself, it becomes
necessary to select the best possible hyperparameters for the estimation
of the loss. However, traditional cross-validation (cv) approaches cannot
be directly applied as we do not have access to the real loss on which to
measure our performance. It may therefore be necessary to study in future
work an approach based on marginalizing those parameters (Brault et al.
[2019]). Additionally, our results only encompass the static setting where
the covariates𝑋 are supposed to be independent of time which is, both
in general and more specifically the survival setting, a very limiting con-
straint. Extending the framework introduced in this thesis to the dynamic
setting where the covariates𝑋(𝑡) are allowed to vary with time is therefore

188



6 Conclusion and Perspectives 189

a natural and import direction for future work.
While the experiments on the ipcw erm framework showed that even

simple estimators of the survival are enough for the reweighing to yield
good results, better weights still lead to better results. We therefore intro-
duced a highly flexible neural based estimator of the survival based on
continuous normalizing flows and showed that this new estimator outper-
formed or matched the current state-of-the-art on censored regression
and ranking tasks. Our estimator has the particularity, compared to most
of the competition, to be a generative model with a flexible likelihood
which enables novel applications beyond scoring and estimating the sur-
vival function, such as the efficient generation of new samples or its use in
Bayesian estimation. This flexibility, however, comes at the cost of a greatly
increased computational overhead which should be mitigated by further
research on efficient neural architectures for survival analysis, or even
the pursuit of different approaches adapted from the generative diffusion
process literature.

This computational cost can be partially solved by reducing the dimen-
sion of the covariates beforehand, a task known as variable selection. In
order to solve this problem, we showed how to estimate the gradient when
it is supposed sparse by formulating the gradient learning problem as
a lasso local linear regression problem with 𝑘-nn averaging. We gave
nonasymptotic upper bounds on the error of the resulting sparse estimate
of the gradient as well as the estimate of the regression function itself. This
𝑘-nn and lasso approach offers a robust and easy to calibrate procedure
for the estimation of the gradient from which we can deduce the most
important variables, either globally by forming the expected gradient outer
product as is done in the single or multi-index approach, or locally by
incorporating the gradient information inside the splitting procedure of a
random forest.

Finally, we made use of the methods introduced in this thesis on the
financial task of securitization, which involves the creation of a portfolio
of loans, and showed that the machine learning approaches proposed lead
to significantly improved results for BNP Paribas. Survival normalizing
flows are used for their generative property to sample time-to-defaults in
order to solve an empirical portfolio optimization problem whose solution
greatly outperforms the standard approach. Additionally, we made use of
both the generative and tractable likelihood aspects of normalizing flows
to motivate their inclusion inside a Bayesian graphical model, playing the
role of a highly tractable black box distribution.



SomeUseful Bounds A
Most of the results and proofs presented in the earlier chapters involve in
some way or another tail bounds of distributions or empirical processes.
There are toomany results to list, and as this is not the goal of this thesis we
will not give any proofs. We will, however, quickly restate some standard
bounds so that the reader does’t have to reach for another reference book
in order to follow some of the proofs. We heartily recommend Wainwright
(2019) to the readers who want to have a very exhaustive overview of the
bounds one can derive in the non-asymptotic and non-parametric setting.
Proposition A.1 (Chernoff ’s bounding technique.). Recall Markov’s in-
equality, for any 𝐿1 integrable random variable 𝑋 we have

𝔼 [𝑋 ≥ 𝑡] ≤ 𝔼 [𝑋]
𝑡
, ∀𝑡 > 0. (A.1)

In particular, if 𝑋 admits a moment generating function on a neigbourhood
[0, 𝑏] then

logℙ [(𝑋 − 𝜇) ≥ 𝑡] ≤ inf
[0,𝑏]
(log𝔼 [𝑒𝜆(𝑋−𝜇)] − 𝜆𝑡) . (A.2)

The technique of introducing an auxialiary variable to be optimized is com-
monly refered to as Chernoff ’s bounding technique and yields many in-
equalities as a special case.

Definition A.1. A random variable𝑋 with mean 𝜇 = 𝔼 [𝑋] is said to be
𝜎 sub-Gaussian if there exists 𝜎 > 0 such that

𝔼(𝑒𝜆(𝑋−𝜇)) ≤ 𝑒𝜎
2𝜆2/2

Proposition A.2 (Hoeffding’s inequality). Let (𝑋𝑖) for 𝑖 = 1,…, 𝑛 be
independent 𝜎𝑖 sub-Gaussians of means 𝜇𝑖 < ∞, then for all 𝑡 > 0

ℙ(
𝑛

∑
𝑖=1
(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡) ≤ exp(−

𝑡2

2∑𝑛𝑖=1 𝜎
2
𝑖
) .

Theorem A.3 (Characterizations of sub-Gaussianity). For any centered
random variable 𝑋, all the following points are equivalent:
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1. (𝜎 sub-Gaussianity) There exists 𝜎 > 0 such that

𝔼 [𝑒𝜆𝑋] ≤ exp(𝜆
2𝜎2

2
) ∀𝜆 ≥ 0.

2. There exists 𝑐 ≥ 0 and 𝑍 ∼ 𝒩(0, 𝜎2) such that

ℙ (|𝑋| ≥ 𝑡) ≤ 𝑐ℙ (|𝑍| ≥ 𝑡) ∀𝑡 ≥ 0

3. There exists 𝑐 ≥ 0 such that

𝔼 [𝑋2𝑘] ≤ (2𝑘)!
2𝑘𝑘!
𝑐2𝐾 ∀𝑘 ∈ ℕ+

4. There exists 𝜎 > 0 such that

𝔼[𝑒
𝜆𝑋2

2𝜎2 ] ≤ 1√1 − 𝜆
∀𝜆 ∈ [0, 1[

Definition A.2. A random variable𝑋 with mean 𝜇 = 𝔼 [𝑋] is said to be
(𝜈, 𝛼) sub-Exponential if there exists (𝜈, 𝛼) ∈ ℝ+ × ℝ+ such that

𝔼 [𝑒𝜆(𝑋−𝜇)] ≤ exp(𝜈
2𝜆2

2
) |𝜆| < 1

𝛼
.

In particular, all sub-Gaussian variables are also sub-Exponential.

Proposition A.4 (Sub-Exponential tail bound.). Suppose that 𝑋 is (𝜈, 𝛼)
sub-Exponential, then

ℙ (𝑋 − 𝜇 ≥ 𝑡) ≤
{
{
{

exp(− 𝑡
2

2𝜈2 ) for 0 ≤ 𝑡 ≤ 𝜈
2

𝛼

exp(− 𝑡2𝛼) for 𝑡 ≥ 𝜈
2

𝛼

Proposition A.5 (Bernstein-type bound). For any random variable𝑋 such
that 𝜇 = 𝔼 [𝑋] and 𝜎 = 𝔼 [𝑋2] − 𝜇2 satisfying the Bernstein’s condition:

|𝔼 [(𝑋 − 𝜇)𝑘]| ≤ 1
2
𝑘!𝜎2𝑏𝑘−2 ∀𝑘 = 2, 3,⋯

we have
𝔼 [𝑒𝜆(𝑋−𝜇)] ≤ exp( 𝜆

2𝜎2

2(1 − 𝑏|𝜆|)
) ∀|𝜆| ≤ 1

𝑏
as well as

ℙ (|𝑋 − 𝜇| ≥ 𝑡) ≤ 2 exp(− 𝑡
2

2(𝜎2 + 𝑏𝑡)
) ∀𝑡 ≥ 0.
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Theorem A.6 (Characterization of sub-Exponential variables.). For a
centred random variable 𝑋, all the following are equivalent:

1. ((𝜈, 𝛼) sub-Exponential) There exists (𝜈, 𝛼) ∈ ℝ+ × ℝ+ such that

𝔼 [𝑒𝜆(𝑋−𝜇)] ≤ exp(𝜈
2𝜆2

2
) |𝜆| < 1

𝛼
.

2. There exists 𝑐 > 0 such that

𝔼 [𝑒𝜆𝑋] < ∞ ∀|𝜆| < 𝑐

3. There exists 𝑐1, 𝑐2 > 0 such that

ℙ (|𝑋| ≥ 𝑡) ≤ 𝑐1𝑒−𝑐2𝑡 ∀𝑡 > 0

4. The following constants exist and are bounded:

sup
𝐾≥2
(
𝔼[𝑋𝑘]
𝑘!
)
1/𝑘

< ∞

DefinitionA.3. A sequence of random variables (𝑌𝑖) adapted to a filtration
(ℱ𝑖) is said to be a martingale if for all 𝑘 ≥ 1 we have

𝔼 [|𝑌𝑘|] ≤ ∞
𝔼 [𝑌𝑘+1 ∣ ℱ𝑘] = 𝔼 [𝑌𝑘]

Theorem A.7. Let (𝑌𝑘) be a martingale with respect to the filtration (ℱ𝑘)
and suppose that almost surely

𝔼 [𝑒𝜆(𝑌𝑘+1−𝑌𝑘) ∣ ℱ𝑘] ≤ 𝑒𝜆
2𝜈2𝑘/2 ∀|𝜆| < 1

𝛼𝑘

then we have the following results
1. ∑𝑛𝑘=1(𝑌𝑘+1 − 𝑌𝑘) is (√∑

𝑛
𝑘=1 𝜈
2
𝑘 , max
𝑘=1,…,𝑛
𝛼𝑘) sub-Exponential

2. The sum of martingale differences satisfies

ℙ(|
𝑛

∑
𝑘=1
(𝑌𝑘+1 − 𝑌𝑘) ≥ 𝑡|) ≤

{{
{{
{

2 exp(− 𝑡
2

2∑𝑛𝑘=1 𝜈
2
𝑘
) 0 ≤ 𝑡 ≤ 𝐶

2 exp(− 𝑡
2 max
𝑘=1,…,𝑛
𝛼𝑘
) 𝑡 ≥ 𝐶

where

𝐶 =
∑𝑛𝑘=1 𝜈

2
𝑘

max
𝑘=1,…,𝑛
𝛼𝑘
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Corollary A.8 (Azuma-Hoeffding’s inequality). Let (𝑌𝑘) be a martingale
with respect to the filtration (ℱ𝑘) and suppose that there exists (𝑎𝑘, 𝑏𝑘 such
that almost surely

𝑌𝑘+1 − 𝑌 + 𝑘 ∈ [𝑎𝑘, 𝑏𝑘] ∀𝑘 ∈ ℕ+.

Then for all 𝑡 ≥ 0 we have

ℙ(|
𝑛

∑
𝑘=1
(𝑌𝑘+1 − 𝑌𝑘) ≥ 𝑡|) ≤ 2 exp(−

2𝑡2

∑𝑛𝑘=1(𝑏𝑘 − 𝑎𝑘)2
)

Corollary A.9 (Bounded differences inequality). Let 𝑓 a function satisfy-
ing the condition

|𝑓(𝑥) − 𝑓(𝑥←𝑥
′
𝑘 )| ≤ 𝐿𝑘 ∀𝑘 = 1, 2,…, 𝑛, ∀𝑥, 𝑥′ ∈ ℝ𝑛

where 𝑥←𝑥
′
𝑘 = [𝑥1,…, 𝑥𝑘−1, 𝑥′𝑘 , 𝑥𝑘+1,…, 𝑥𝑛], then

ℙ (|𝑓(𝑋) − 𝔼 [𝑓(𝑋)]| ≥ 𝑡) ≤ 2 exp(− 2𝑡
2

∑𝑛𝑘=1 𝐿
2
𝑘
) ∀𝑡 ≥ 0

Theorem A.10. Let (𝑋1,…,𝑋𝑛) be a vector of independant and identically
distributed standard Gaussian variables, and 𝑓 ∶ ℝ𝑛 ↦ ℝ be 𝐿-Lipschitz.
Then 𝑓(𝑋) − 𝔼[𝑓(𝑋)] is𝑀 sub-Gaussian with𝑀 ≤ 𝐿 i.e.

ℙ (|𝑓(𝑋) − 𝔼[𝑓(𝑋)]| ≥ 𝑡) ≤ 2 exp(− 𝑡
2

2𝐿2
) ∀𝑡 ≥ 0.

Lemma A.11. Suppose that 𝑓 ∶ ℝ𝑛 ↦ ℝ is differentiable, then for any
convex 𝜑 ∶ ℝ ↦ ℝ:

𝔼 [𝜑 (𝑓(𝑋) − 𝔼 [𝑓(𝑋)])] ≤ 𝔼 [𝜑(𝜋
2
⟨∇𝑓(𝑋), 𝑌⟩)] ,

where 𝑋,𝑌 ∼ 𝒩(0, 𝕀𝑛) independent standard gaussians.
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Figure B.1: Geographical Distribution of the Great Plague, London (1606).

B.1 Counting deaths
In the introduction we argued that most of the historical examples of
survival analysis treat the problem as an estimation problem whose goal
is to understand the causes and effects of some phenomenon, usually a
disease, on the life expectancy; as opposed to the less inquiring question
of prediction. We give here two early examples of survival analysis that
both laid the foundations of techniques we ourselves made use of in this
thesis: survival analysis as a counting process, and survival analysis as a
dynamical process.

B.1.1 The Plague
In 1345, the Mongol army of the Golden Horde laid siege to the Genoese
trade port of Kaffa in Crimea. While this event is today largely forgotten,

194
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Age Interval Proportion of
Deaths

Proportion of Survivors
Until Start

0–6 0.36 1.00
7–16 0.24 0.64
17–26 0.15 0.40
27–36 0.09 0.25
37–46 0.06 0.16
47–56 0.04 0.10
57–66 0.03 0.06
67–76 0.02 0.03
77–86 0.01 0.01

Table B.1: Of the number of
inhabitants.

its consequences had a long-lasting impact on modern civilization. The
Mongol army of Jani Beg didn’t only bring with it warfare, it also brought
a more insidious enemy: the bubonic plague. By fleeing from Kaffa, the
Genoese merchant ships brought with them the deadly disease, spreading
it along the trade routes of Medieval Europe and causing the death of
nearly half of the European population and while no outbreak of the
same magnitude ever impacted Europe since then, the plague became
a fact of life for most of Europe. In 1665, England experienced its last
great outbreak in the Great Plague of London. While the plague of 1345
was mostly characterized by its lack of data, scientific methodology had
flourished and the foundations of what would one day become the field
of statistics had already been laid. In 1661, in the midst of the last Plague
outbreaks, John Graunt, a Londonian haberdasher, was tasked by a group
of merchants of London to collect data on the viability of commercial
enterprises, or in plain English: to performmarket research on the number
of potential customers. In 1661, a potential customer was first and foremost
a living customer and it would have been foolish to start a new commercial
endeavour in a borough without sufficient population. While data was
then, to our standards, scarce and often incomplete; one may be surprised
to learn that demographic data was meticulously recorded and archived,
often by the clergy. By tallying up the records of local parishes, the City
of London was able to produce accurate records of the demography both
in birth and deaths in the form of Bills of Mortality. table B.3 is one
such bill of mortality, as it would have been available the Graunt during his
work. Later, other information such as the supposed cause of death or age
of death would be added. Graunt wasn’t a statistician or mathematician by
any standards but was able to interpret the data from the bill of mortality
from intuition and after making a few hypotheses was able to build the
following table B.1 From the table B.1, Graunt was able to derive table B.2,
the probability of dying in a given interval provided you had survived
until then. Not only, unknown to him or any of his peers, was Graunt
able to tabulate 𝑆(𝑥) = 1 − 𝐹(𝑥) (second column of table B.1), the survival
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Age Interval Probability of Dying
If Alive at Start

0–6 0.06
7–16 0.0375
17–26 0.0375
27–36 0.036
37–46 0.0375
47–56 0.04
57–66 0.05
67–76 0.0667
77–86 0.1

Table B.2: Rate of death by age
interval.

137: Of course, as a Frenchman it
is my duty to remind the reader
that Leibniz’s calculus obviously
came first.

function of a Londoner, but also the hazard rate for a specific interval.
Of course, the notion of cumulative distribution function didn’t exist yet,
and Newton137 wouldn’t invent calculus until 60 years later, making any
insights into the instantaneous rate of death impossible. Graunt’s results
were, however, more than enough to derive insights: while it may seems
obvious today, he was amongst the first to treat census data as ordered
data, making the assumption that people close in age are more related
than people of completely different ages enabling him to derive rate of
dying yearly for each age. From these insights Graunt was not only able to
estimate the life expectation of a Londoner to be,

𝔼(𝑋) = 3 × .36 + 10.5 × .24 + 20.5 × .15
+ 30.5 × .09 + 40.5 × .06 + 50.5 × .04
+ 60.5 × .03 + 70.5 × .02 + 80.5 × .01
= 18 years

but more importantly to notice that people were dying at the same rate
whether they were 20 or 50 years old: the primary cause of death was
therefore not attributable to age and couldn’t be natural: it was the plague.
John Graunt was able to derive the previous results having only access
to aggregated population data which by chance made the task easier and
tractable using the tools at disposition at the time. Indeed, by deciding
to study age intervals and by recording deaths in each interval, Graun
unknowingly recorded at-risk individuals and events therefore bypassing
the problem of censoring that we will introduce later. The formalization
of Graunt’s insight is exposed in §1.2 and §2.1 through the Kaplan-Meier
and Nelson-Aalen estimators, and more generally the product-integral
approaches resulting from the counting process view of survival analy-
sis. Graunt’s archaic, but impressively enlightened, form of data analysis
of mortality data was enough to answer the question being asked. As
knowledge increases so do the complexity of the questions we want an-
swered. While Graunt and his merchant sponsors were perfectly content
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Figure B.2: Survival function of a
Londoner in 1606.
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Figure B.4: Smallpox Vaccination
(1934), Ota Chou

only knowing the proportion of people alive at each age, surely survival
data can be put to better use.

B.1.2 The Smallpox.
The plague may have, in the mind of many, become associated with the
idea of deadly pandemics, especially to someone born in recent times,
after the advent of vaccination and other prophylactic measures. It is
therefore not a surprise that most would not suspect that until very re-
cently diseases that were farmore deadly and prevalent were commonplace
enough to be part of everyday life. While Graunt and his contemporaries
didn’t have any means of fighting the plague other than vague yet in a
way surprisingly accurate theories around miasmas, leading to politics
of enhanced sanitation and what we would today call social distancing,
there didn’t exist any medical solution to the disease, making counting
deaths the only possible application of survival analysis. This wasn’t the
case for smallpox, the other great disease of the time, a bigger and more
familiar killer. People knew that unlike the black death, smallpox could
be fought: indeed if you already suffered from it, you couldn’t become ill
to it again. This knowledge led the Ming dynasty to encourage inoculation
or variolation: the process of exposing a subject to smallpox (by scraping
a smallpox blister before scraping the subjects’ skin) in a controlled man-
ner. British and Dutch merchants, learning from this practice reported it
back in the continent. Inoculation is not however harmless, it is after all
exposition to a live virus with an extremely high case fatality (case fatality,
or the proportion of infected people who die, was estimated to around
30% for normal infections), even if through trial and error the advocates
of inoculation discovered that proper inoculation had a much lower case
fatality (of around 2–3%) due to a lower and controlled viral dose.

While it seemed to many that inoculation did in fact work; considering
the fact that nobody could understand why, it is not surprising that the
idea of inoculating large swathes of the population was met was great
resistance. It was therefore necessary to prove that the risk taken was
indeed beneficial and outweighed the potential side effects.

While by the late 1700s, most of Europe had already adopted variolation
as a means to fight small pox (with the acceleration of the concentration of
population in cities, it was now estimated that 1⁄10 of the population would
eventually succumb to the smallpox.), France seemingly resisted or at least
proved to be sceptical to the idea of mass variolation of the population.
This fear of variolation was not limited only to the “uneducated” masses
and cannot be entirely blamed on obscurantism as virulent opposition
often came from intellectuals still revered today such as Voltaire:

It is inadvertently affirmed in the Christian countries of Eu-
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Weeks. Days of the
Month.

Chriſt. Bur. Pla. Par.
infec.

Weeks. Days of the
Month.

Chriſt. Bur. Pla. Par.
infec.

1 Dec. 26 100 116 5 5 28 July 3. 109 110 25 12
2 January 2. 117 151 6 5 29 10. 111 134 33 18
3 9. 130 138 4 4 30 17. 115 146 50 22
4 16. 124 138 3 2 31 24. 96 140 46 26
5 23. 143 121 6 4 32 31. 132 178 66 29
6 30. 124 101 3 2 33 Auguſt 7. 131 181 67 29
7 Febr. 6. 122 105 5 5 34 14. 141 197 75 33
8 13. 131 118 7 6 35 21. 133 189 85 28
9 20. 126 109 12 6 36 28. 125 207 85 29

10 27. 102 117 9 8 37 Septem. 4. 123 241 116 32
11 March 6. 110 98 7 4 38 11. 134 216 105 28
12 13. 126 137 9 7 39 18. 121 214 92 36
13 20. 123 133 14 11 40 25. 132 204 87 35
14 27. 134 123 17 8 41 October 2. 121 256 141 40
15 April 3. 123 114 13 9 42 9. 134 218 106 38
16 10. 132 145 27 11 43 16. 142 227 117 37
17 17. 139 129 12 8 44 23. 131 224 109 38
18 24. 118 110 11 7 45 30. 124 226 101 34
19 May 1. 92 136 17 10 46 Novem. 6. 136 183 68 27
20 8. 116 103 13 11 47 13. 125 162 41 20
21 15. 128 94 13 8 48 20. 121 145 28 11
22 22. 113 132 14 9 49 27. 143 123 22 13
23 29. 94 98 9 7 50 Decem. 4. 155 160 45 17
24 June 5. 129 112 16 8 51 11. 135 137 38 20
25 12. 127 112 19 14 52 18. 136 132 28 15
26 19. 121 119 15 10 53 25. 134 135 38 19
27 26. 132 126 24 16

The Totals
{{
{{
{

Chriſtened — — 6614
Buried — — 7920
Whereof of the Plague 2124

✳Bell’s London’s Remembrancer.

Table B.3: A Table of the
Christenings and Mortality
For the Year 1605 and 1606.✳
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138: “On dit doucement, dans
l’Europe chrétienne, que les
Anglais sont des fous et des
enragés: des fous, parcequ’ils
donnent la petite vérole à leurs
enfants, pour les empêcher de
l’avoir, des enragés, parce qu’ils
communiquent de gaieté de
coeur à ces enfants une maladie
certaine et affreuse, dans la vue
de prévenir un mal incertain.”

139: That is 𝑠(𝑡) is the survival
rate of smallpox and 1 − 𝑠(𝑡) is
the case fatality rate.

140: That is, the subsurvivals of
an individual at age 0.

rope that the English are fools and madmen. Fools, because
they give their children the smallpox to prevent their catch-
ing it; and madmen, because they want only communicate a
certain and dreadful distemper to their children, merely to
prevent an uncertain evil.138 (Voltaire)

It would, however, be unfair to disregard this opposition as gross errors
as in fact, the scientific debate of the time to decide whether to inoculate
the small pox or not was very much alike what one could observe today.
Most prominently (for us at least) is the very public debate between Daniel
Bernoulli and Jean Le Rond d’Alembert. While both agreed on principle
on the usefulness of variolation, they disagreed fervently on the scien-
tific reasoning (and maybe, at least in part, because of personal rivalry).
We will not expose here the reasons of the disagreement as they mostly
pertain on the philosophy of science and the use of statistics to guide
it, D’Alembert also argues on the personal benefit using arguments that
readers familiar with macroeconomics will recognize as considerations
of utility or risk convexity for the more econometrically inclined. It is,
however, a subject still relevant today and we refer the curious reader to
Colombo and Diamanti (2015) for more details. However the argument
brought forward by Bernoulli in front of the Académie des Sciences de
Paris in 1760 further proved the importance of studying lifetimes in order
to take decisions.

After the question of the variolation was made the central question of
the scientific talks of the Académie des Sciences by Charles Marie de La
Condamine in 1754, Bernoulli proposed a dynamical model of the small-
pox with the goal of comparing the outcomes in terms of mean survival
times, i.e. life expectation, between the variolated and non-variolated pop-
ulations. In Bernoulli’s model, death can happen randomly either because
of smallpox or due to other factors, it is, however, possible to survive small-
pox such that immunity is acquired, leaving only the other factors of death
as possible causes. By viewing variolation as a form of induced immunity,
Bernoulli is able to model the variolated and unvariolated populations
using the exact same mechanics but with different initial conditions. Us-
ing the modern notation of differential equations, we can denote by 𝑠(𝑡)
the fraction of the population that is infected and survives at time 𝑡 and
1− 𝑠(𝑡) the fraction that is infected and dies.139 We then denote by 𝜆(𝑡) the
instantaneous rate of infection to smallpox, while 𝜇(𝑡) is the instantaneous
of death by other causes. If we take 𝑢(𝑡) the probability of a newborn to
still be alive and susceptible at age 𝑡 and𝑤(𝑡) the probability to be immune
and alive,140 then both follow the ode
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① Susceptible

② Immune

③ Dead

𝑠(𝑡)𝜆(𝑡)

𝜇(𝑡) + (1 − 𝑠(𝑡)) 𝜆(𝑡)

𝜇(𝑡)

Figure B.5: Bernoulli’s epidemio-
logical model of the smallpox.

141: Or maybe unsurprisingly
given Bernoulli’s pedigree and
accomplishments.

d𝑢
d𝑡
= − (𝜆(𝑡) + 𝜇(𝑡)) 𝑢(𝑡) 𝑢(0) = 1

d𝑤
d𝑡
= 𝑠(𝑡)𝜆(𝑡)𝑢(𝑡) − 𝜇(𝑡)𝑤(𝑡) 𝑤(0) = 0

This population dynamics model proposed by Bernoulli, represented
graphically in fig. B.5, can be seen today as multi-state survival model
and therefore represents one of the earliest examples of survival analysis.
More surprisingly,141 Bernoulli was able to show that the previous equation
admits the solution

𝑢(𝑡) = exp(−Λ(𝑡) − 𝑀(𝑡))

𝑤(𝑡) = 𝑒−𝑀(𝑡) ∫
𝑡

0
𝑠(𝑦)𝜆(𝑦)𝑒−Λ(𝑦) d𝑦

where Λ and𝑀 are what would now be known in the literature as the
cumulative hazards

Λ(𝑡) = ∫
𝑡

0
𝜆(𝑦) d𝑦

𝑀(𝑡) = ∫
𝑡

0
𝜇(𝑦) d𝑦

We skip here the intermediate details, which are given in great details in
Dietz and Heesterbeek (2002) or Colombo and Diamanti (2015) for the
modern interpretation or simply in Bernoulli (1766). If we denote by 𝑆(𝑡)
the probability of surviving at age 𝑡, then we have

𝑆(𝑡) = 𝑢(𝑡) + 𝑤(𝑡) = 𝑆0(𝑡) (𝑒−Λ(𝑡) + ∫
𝑡

0
𝑠(𝑦)𝜆(𝑦)𝑒−Λ(𝑦) d𝑦)

with
𝑆0(𝑡) = 𝑒−𝑀(𝑡),

the baseline survival function of the population without smallpox. If we
then introduce 𝑥(𝑡) = 𝑢(𝑡)/𝑆(𝑡) the proportion of at risk individuals at age
𝑡 we can then derive the differential equation

d𝑥
d𝑡
= −𝜆(𝑡)𝑥(𝑡) (1 − 𝑥(𝑡) − 𝑠(𝑡)𝑥(𝑡)) 𝑥(0) = 1,
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Figure B.6: Increased survival of
the smallpox variolated popula-
tion compared to the population
with smallpox present.

142: Who introduced Bernoulli’s
equations as well as the law of
large numbers. Not to be con-
fused with Johann Bernoulli, the
other other Bernoulli, known for
his contributions to infinitesimal
calculus as well as educating
Leonhard Euler. Work on cloning
the Bernoulli’s family may be a
valid future research direction.

143: And manually!

144: The reader may be shocked
by such a low life expectancy, but
one has to remember that people
did live old, infantile mortality
was just at the time incredibly
high.

145: Variolation, contrary to vac-
cination, involves the exposition
to a live virus but, hopefully, in a
non-lethal quantity.

which does not involve the mortality 𝜇(𝑡). Quite luckily, this differential
equation was already known at the time to be solvable through the work
of the other Bernoulli, Jacob, Daniel’s uncle..142 It is possible to show that

𝑥(𝑡) = 𝑒−Λ(𝑡)

𝑒−Λ(𝑡) + ∫𝑡
0
𝑠(𝑡)𝜆(𝑡)𝑒−Λ(𝑡) d𝑦

.

All that is left for the model to be complete is then to reconstruct the miss-
ing quantities from real-world data in order to obtain the desired estimate
of the survival function of the population with smallpox present compared
to a population without smallpox, that is a hypothetically variolated at
birth population. Fortunately for us, and Bernoulli, Edmond Halley was
able in 1693 to establish a life table for the deaths from smallpox in the
city of Breslau much akin to that of Graunt (Halley [1693]), reproduced
here in table B.4. From that table Bernoulli was able to infer the missing
variables in order to derive the survival functions of both the unvariolated
and variolated populations in fig. B.6. After numerically143 integrating
the aforementioned survival functions, Bernoulli was then able to deduce
the life expectancy with smallpox to be 26.57 years compared to 29.65
years without smallpox; a more than 3-year increase in life expectancy.144
However as, already at the time, most opponents of variolation accurately
objected; variolation was not a perfectly safe145 procedure. In order to
account for that fact, Bernoulli considered a probability 𝑝 of dying from
the act, and showed that in order for the life expectancy gain to disappear
we need 𝑝 ≥ 0.11. As Bernoulli estimated that the true risk of variolation
was 𝑝 = 0.01, his position was clear:

I simply hope that, in a question that so closely regards the
wellbeing of the human race, no decisionwill be takenwithout
considering all the information that a modest analysis and
calculation can provide. (Daniel Bernoulli)
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The method employed here by Bernoulli show a different type of ques-
tion: “How do the disease react through time?” and is therefore meant as a
tool for decision by making the interactions and mechanisms explicit such
that it is possible to study the impact of a change and therefore of an deci-
sion. Bernoulli’s approach is surprisingly modern and can be considered
a precursor to the Susceptible, Infectious, or Recovered (sir) model still
in use today for the modelling of SARS-CoV-2 and policy design during
the COVID-19 pandemic (Y.-C. Chen et al. [2020]; Cooper, Mondal, and
Antonopoulos [2020]).
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Ages
par

années.

Survivans
ſelon

M. Halley.

N’ayant
pas eu

la
pet. vérole.

Ayant eu
la

pet. vérole.

Prenant
la

pet. vérole
pendant

ch. année.

Morts
de la

pet. vérole
pendant
caq. ann.

Somme
des morts

de la
pet. vérole.

Morts
par d’autres
maladies

pend. chaq.
année.

0 1300 1300 0
1 1000 896 104 137 17.1 17.1 283
2 855 685 170 99 12.4 29.5 133
3 798 571 227 78 9.7 39.2 47
4 760 485 275 66 8.3 47.5 30
5 732 416 316 56 7.0 54.5 21
6 710 359 351 48 6.0 60.5 16
7 692 311 381 42 5.2 65.7 12.8
8 680 272 408 36 4.5 70.2 7.5
9 670 237 433 32 4.0 74.2 6

10 661 208 453 28 3.5 77.7 5.5
11 653 182 471 24.4 3.0 80.7 5
12 646 160 486 21.4 2.7 83.4 4.3
13 640 140 500 18.7 2.3 85.7 3.7
14 634 123 511 16.6 2.1 87.8 3.9
15 628 108 520 14.4 1.8 89.6 4.2
16 622 94 528 12.2 1.6 91.2 4.4
17 616 83 533 11.0 1.4 92.6 4.6
18 610 72 538 9.7 1.2 93.8 4.8
19 604 63 541 8.4 1.0 94.8 5
20 598 56 542 7.4 0.9 95.7 5.1
21 592 48.5 543 6.5 0.8 96.5 5.2
22 586 42.5 543 5.6 0.7 97.2 5.3
23 579 37 542 5.0 0.6 97.8 6.4
24 572 32.4 540 4.4 0.5 98.3 6.5

Table B.4: Halley’s table as reproduced and extended by Bernoulli.



Introduction - Français C
La tâche étudiée dans cette thèse est celle de la prédiction de la mort

d’individus à partir de leurs caractéristiques. Cette tâche, généralement
connue sous le nom d’analyse de survie, et à l’origine intrinsèquement liée
à celle de l’épidémiologie, a une riche histoire mathématique et a évolué
en suivant les progrès constants des statistiques. La modélisation du décès
d’un individu est restée pendant des siècles l’un des problèmes phares
de la recherche médicale et de la biostatistique pour la simple raison que
comprendre la cause du décès est un premier pas vers la prévention de ce
décès. Ainsi, les statisticiens ont pu fournir aux chercheurs médicaux les
outils mathématiques nécessaires pour répondre aux questions médicales
de manière scientifique, comparer la survie de sous-populations ou quanti-
fier la certitude de leurs hypothèses. Cette thèse comportera de nombreux
exemples médicaux de ce type, non seulement parce qu’il s’agit d’une appli-
cation intéressante et utile, mais aussi parce que les chercheurs médicaux
ont généreusement offert à la communauté scientifique un grand nombre
de données ouvertes sur lesquelles il est possible de tester de nouvelles
approches. Ce mémoire ne porte toutefois pas sur la médecine, mais sur
la finance et il ne s’agira pas ici de comprendre les causes et les effets ou
de prouver statistiquement des affirmations, mais uniquement de prédire
la mort. Cette thèse, bien qu’en grande partie théorique, a pour objectif
principal de répondre aux besoins pratiques de BNP Paribas et en parti-
culier du département Portfolio Management de la branche CIB, dont le
rôle principal est de réduire l’exposition de la banque au risque de crédit
en gérant activement celui-ci. Afin de gérer ce risque, nous devons prédire
avec précision les événements potentiels, souvent en utilisant des données
très peu structurées et volumineuses, ce qui motive naturellement une
étude rigoureuse du risque de crédit dans le cadre de l’analyse de survie et
de l’apprentissage automatique.

C.1 Vie et mort d’une entreprise
Nous avons surtout décrit l’étude de la mort au travers de l’étude de la
mort des individus, mais celle-ci n’est pas réservée aux êtres vivants. Même
dans le langage courant, il n’est pas rare de désigner la défaillance catas-
trophique d’un objet comme sa mort ; “Mon téléphone est mort !”. Si la

205
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Figure C.1 : Monnaie sonnante et
trébuchante vs masse monétaire.

147 : Dans un monde parfait du
moins. Ou de manière plus réa-
liste si l’on est responsable d’une
flotte de milliers de téléphones
d’entreprise.

148 : Il est également possible de
le voir comme un problème de
bandit (Ruiz-Hernández, Pinar-
Pérez et Delgado-Gómez [2020] ;
Fouché, Komiyama et Böhm
[2019]).
149 : On pourrait dire que la
monnaie elle-même ne repré-
sente qu’un bon-pour-avoir ou un
crédit sous forme physique.

150 : L’argent que j’ai aujourd’hui
sur mon compte bancaire est en
réalité un prêt, dont j’espère que
ma banque ne fera pas défaut.

mort peut également frapper des objets inanimés, il semble alors judicieux,
ou du moins utile de la prévoir avant qu’elle ne survienne peut-être par
exemple pour mettre de côté de l’argent147 pour un nouveau téléphone
avant que le précédent ne meure subitement. Dans ce cas précis, à savoir la
prédiction de la défaillance d’un élément mécanique, prévoir la défaillance
avant qu’elle ne se produise permet de programmer la maintenance à
l’avance afin d’être parcimonieux sur les coûteux contrôles et opérations
de maintenance. Ce problème, connu dans la littérature sous le nom de
maintenance prédictive (voir Zonta et al. [2020] ; Bousdekis et al. [2019] ;
Ran et al. [2019], pour un aperçu), peut naturellement être traité comme
un problème d’analyse de survie (see e.g. C. Chen et al. [2020]).148 Une
interprétation similaire apparaît naturellement dans le monde financier
à travers le concept de credits. Depuis l’avènement de la banque, et plus
tard des réserves fractionnaires, les crédits en sont venus à représenter la
majorité des actifs monétaires en circulation149 car elle libère des liquidités
qui peuvent être ensuite réutilisées dans l’économie de façon plus produc-
tive. Ce phénomène s’est fortement accéléré ces dernières années, car les
gens ont fini par accepter la dissociation entre les concepts de monnaie,
i.e. moyen d’échange, et de physicalité. Dans figure C.1, nous représentons
le stock monétaire du dollar américain, où le stock M1 englobe la monnaie
hors du Trésor américain, les dépôts dans les banques commerciales et
autres dépôts vérifiables et le stock M2 est constitué du stock M1 plus les
dépôts d’épargne et les soldes des fonds monétaires de détail. Bien qu’il
ne s’agisse pas d’un problème en soi, le fait que la majeure partie du bilan
des entreprises ou même des individus150 consiste désormais en des prêts
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151 : Dans le cas le plus général.
Nous faisons ici l’amalgame par
abus entre le risque de crédit et le
risque de contrepartie.
152 : Eventuellement actualisée
au taux sans risque, mais nous
ignorerons ici toutes les pré-
occupations d’ordre purement
financier.

153 : En pratique, tous les pro-
duits financiers sont évalués
comme la valeur attendue de leur
gain, mais la valeur attendue n’est
pas nécessairement prise sous la
mesure de probabilité naturelle
mais souvent sous une proba-
bilité différente appelée mesure
risque-neutre. Cela sort du cadre
de cette thèse mais les lecteurs cu-
rieux peuvent se référer à Shreve
(2004).

154 : C’est-à-dire un événement
situé profondément dans la
queue de distribution des pertes.

qui comportent un risque de contrepartie signifie que la richesse doit être
traitée comme une variable aléatoire. Un défaut est alors la mort d’un prêt.

C.1.1 Défauts et contagions
Si, du point de vue de l’emprunteur, les prêts peuvent effectivement être
considérés comme de l’argent avec décote puisqu’il reçoit des espèces son-
nantes et trébuchantes, il n’en va pas du tout de même pour le prêteur. Du
point de vue du prêteur, les prêts comportent une part importante d’in-
certitude ou de risque appelé risque de contrepartie151 : l’emprunteur peut
très bien ne jamais rembourser son prêt. La valeur d’un prêt, c’est-à-dire la
somme d’argent que le prêt rapportera,152 est donc une quantité aléatoire.
Si l’emprunteur rembourse intégralement son prêt, alors la valeur réalisée
sera le prêt plus les intérêts tandis que si, pour une raison quelconque,
le prêt n’est pas remboursé, la valeur ne sera alors égale qu’au principal
et aux intérêts remboursés jusqu’au moment du défaut. Il est clair que le
gain réalisé est par nature stochastique et dépend de l’événement aléatoire
“a remboursé son emprunt” dont la probabilité est primordiale. À partir
de cette observation, il est possible de définir la juste valeur d’un prêt,
que pour des raisons de simplicité nous supposerons ici être le bénéfice
attendu,153 et à partir de cette définition de la juste valeur, il est possible
de trouver le taux auquel un prêt devrait être émis. Il y a cependant un in-
convénient important à la remarque précédente : en raisonnant en termes
de valeur espérée, nous masquons le fait que les individus ne disposent
que d’une quantité finie d’argent et ne peuvent donc survivre qu’à une
quantité finie de pertes. Ce ne serait pas un problème si toutes les entités
disposaient de plus de liquidités que de prêts en cours, mais nous avons
vu précédemment dans figure C.1 que, pour de bonnes raisons, la quantité
d’argent liée à des prêts dépasse largement la quantité d’argent détenue
en propre. Il est donc possible, et même garanti après suffisamment de
temps (voir Embrechts, Klüppelberg et Mikosch [1997], pour la théorie
de la ruine, e.g. figure C.2), qu’un événement extrême 154 se produise et
soit plus dommageable à ce que le prêteur peut supporter. Si de tels événe-
ments catastrophiques sont en théorie rares, leur impact peut avoir des
répercussions catastrophiques pour les mêmes raisons que les virus ont
un impact important sur la population globale. Les individus, ou dans ce
cas les entreprises n’existent pas en vase clos et interagissent les uns avec
les autres. Si, dans le cas de la peste ou de la variole, cette interaction peut
entraîner la propagation d’une charge virale, dans le cas des entreprises,
elle se traduit par la propagation de pertes de crédit. Une entreprise subis-
sant une perte de crédit extrême au point d’entraîner son propre défaut
est un événement incroyablement rare pris individuellement, mais une
défaillance systématique d’une multitude de prêts et d’entreprises est un
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Figure C.2 : Actifs d’une en-
treprise provenant de prêts vus
comme un processus de Poisson
composé.

155 : Les lecteurs de cette thèse
peuvent également avoir le cas
plus récent d’Evergrande comme
exemple en fonction de la façon
dont les événements se sont
déroulés.
156 : S’il vous plaît, ne prenez
pas mes explications comme
autre chose qu’une métaphore,
se référer à A. J. Pollard et Bijker
(2021).
157 : Inattendues au sens com-
mercial, pas au sens mathéma-
tique. L’abus de termes mathéma-
tiques est une tradition de longue
date dans le monde financier,
juste derrière celle d’inventer des
nouvelles lettres grecques.

événement beaucoup plus probable conditionné à ce premier défaut, ou
patient zéro. Une entreprise subissant une perte suffisante pour provoquer
sa propre défaillance est, par définition, incapable d’honorer ses propres
prêts ce qui, selon la taille de l’entité qui s’effondre, peut provoquer la dé-
faillance en cascade d’autres entreprises. Au fur et à mesure que d’autres
entreprises ne remboursent pas leurs prêts, le phénomène se propage dans
le complexe maillage des relations financières et peut, dans le pire des cas,
provoquer une crise financière d’ampleur globale. De tels événements ont
conduit à la crise hypothécaire de 2008 où la corrélation entre les entités,
et par conséquent le risque de propagation de ce virus financier, a été
sous-estimée.155 Étant donné les parallèles entre les virus biologiques et le
risque de crédit, il n’est donc pas étonnant que l’étude des pandémies ait
inspiré le traitement des crises financières.

C.1.2 Vaccination réglementaire
Après la crise de 2008, des mesures sans précédent ont été mises en œuvre
afin de vacciner le monde financier contre le risque de crédit. Alors que les
vaccins reposent sur l’administration d’une quantité minimale d’antigènes
afin de survivre à une charge virale normale,156 les réglementations en
matière de crédit telles que Bâle ii à Bâle iv (Basel Committee [2019]),
s’appuient sur la présence d’un montant tampon minimum de liquidités
pour survivre aux situations extraordinaires ou “inattendues” 157 comme
représenté dans figure C.3, afin d’assurer des pertes sans défaillance et donc
sans contamination des autres contreparties. Afin d’assurer la résilience
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Figure C.3 : Pertes attendues,
inattendues et stressées

158 : Volontaires ou non.

159 : Afin de représenter le degré
de centralité et de contact aux
autres de l’institution.
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Figure C.4 : Capital requis en
fonction de la probabilité de dé-
faut.

160 : Les rendements en finance
sont directement liés au risque.
Les actifs sans risque n’offrent
donc aucun rendement, voire des
rendements négatifs.

des acteurs financiers aux pertes extrêmes, ceux-ci sont tenus de détenir un
montant minimum de capital pour compenser les actifs risqués désignés
ici par RWA tel que

Capital
RWA
≥ 0.08.

Afin d’harmoniser les approches, et surtout d’éviter les calculs douteux du
rwa et donc de graves sous-estimations158 du capital requis, le bis fournit
une approche standard pour la détermination des quantités requises. Pour
les prêts aux entreprises par exemple, le dispositif de Bâle iii impose

Capital = LGD × (Φ(√ 1
1 − 𝑅
Φ−1(𝑝) + √ 𝑅

1 − 𝑅
Φ−1(0.999)) − 𝑝) ,

RWA = Capital × EAD
0.08

,

où 𝑅 est un facteur de corrélation défini par

𝑅 = 𝐴(0.12 × 1 − 𝑒
−50𝑝

1 − 𝑒−50
+ 0.24 × (1 − 1 − 𝑒

−50𝑝

1 − 𝑒−50
)) ,

et𝐴 ∈ {1, 1.25} est un facteur dépendant de la taille de l’institution,159 Φ est
la fonction de répartition de la loi normale standard et 𝑝 est la probabilité
de défaut. Comme la probabilité de défaut est la seule quantité qui n’est
pas explicitement donnée, et le cœur des valeurs précédentes comme
l’illustre rapidement figure C.4, son estimation joue un rôle central dans
la stratégie commerciale des organisations financières. En effet, si chez
l’homme la vaccination ne présente pas d’inconvénient majeur autre qu’un
bras potentiellement douloureux ou un syndrome grippal, ce n’est pas le cas
chez les acteurs financiers. Se préparer à un défaut catastrophique et suivre
les réglementations implique de geler une quantité importante d’argent
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161 : ou “mort” vs “non-mort” ou
“échec” vs “non échec”.

Figure C.5 : Memento mori.
Pour Benjamin Franklin, “Rien
ne peut être considéré comme
certain, sauf la mort et les im-
pôts”. Nous demandons au lecteur
d’ajouter les défauts à cette liste
pour le reste de cette thèse.

dans des actifs sans risque160 et donc un coût d’opportunité important avec,
dans le pire des cas, des pertes économiques réelles. Si le régulateur fournit
des lignes directrices sur l’estimation de 𝑝 sur la base de la notation donnée
par les agences externes, il offre également certaines libertés et permet à
cette quantité clé d’être modélisée en interne en utilisant l’approche dite
irba.

La plupart des approches en risque de crédit traitent le problème comme
un problème de classification, prédisant soit le défaut, soit l’absence de
défaut. Cependant, cette approche présente de sérieux inconvénients, car
elle repose sur la discrétisation du temps et sur la décision arbitraire de
classer quelque chose comme défaut ou non-défaut sur la base d’un seul
horizon temporel 𝜏. Dans cette approche, une entreprise qui fait défaut
après 𝜏+1 jours est considérée comme un bon payeur, une décision somme
toute assez discutable. Pour cette raison, et parce que l’on rencontre exac-
tement les mêmes problèmes dans le domaine médical, nous adopterons
ici une approche différente : au lieu de prédire un événement binaire, “dé-
faut” vs “non-défaut” 161 nous prédirons le temps jusqu’au défaut, ou plus
généralement le temps jusqu’à l’événement, en adoptant le point de vue
que toutes les entreprises finissent par faire défaut et que nous n’avons
qu’éventuellement pas pu l’observer.

C.2 Temps jusqu’a l’événement
La prédiction de l’occurrence d’un événement peut être abordée sous de
multiples angles, le plus simple étant de traiter le problème comme un
problème de classification binaire. Après avoir choisi un seuil temporel
𝜏, il est possible de reformuler la plupart des problèmes impliquant la
survie d’un individu, vivant ou non, comme le problème de classification
“l’événement s’est-il produit avant 𝜏 ou non?”. Cette approche simpliste
s’avère être bien adaptée à de nombreux problèmes où l’acte de choisir un
seuil est en soi naturel, par exemple pour un emprunt spécifique d’une
durée prédéterminée 𝜏, mais elle est souvent en pratique très insuffisante.
La plupart des problèmes ne peuvent pas être binarisés naturellement ;
pour une ligne de crédit perpétuelle, si l’on fixe le seuil à 𝜏, cela signifie-t-il
que les clients qui font défaut à 𝜏 + 1 sont de bons clients? Dans le cadre
médical, si le but est de comparer deux traitements, où doit-on fixer 𝜏?
Pour un grand 𝜏 on observe potentiellement que des décès naturels ou
même rien du tout si l’étude est trop courte et pour un petit 𝜏 on court le
risque de ne pas avoir attendu assez longtemps pour observer quoi que ce
soit. De plus, en traitant le problème comme une tâche de classification,
on est rapidement confronté à des problèmes de déséquilibres des classes
puisque, heureusement, la plupart des clients ne font pas défaut et la plupart
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162 : La notation inhabituelle de
𝑝 au lieu de celle plus commune
de 𝑓 pour la densité sera utilisée
dans cette thèse.

163 : Par exemple, à la fin d’une
étude médicale.

des gens ne meurent pas, ce qui résulte en des instances de classification
difficiles.

Pour ces raisons et bien d’autres, il est donc plus naturel de traiter le
problème de la prédiction d’un événement comme le problème de la pré-
diction d’un temps jusqu’à un événement, c’est-à-dire l’apprentissage de la
distribution des moments à partir d’aujourd’hui où l’événement d’intérêt
se produit. Si nous désignons le temps jusqu’à l’événement par 𝑌 ∈ ℝ+,
suivant la notation habituelle de la régression, que nous supposons par
convention être une variable aléatoire positive, nous souhaitons alors es-
timer la distribution de 𝑌 à travers l’une des multiples quantités qui la
définissent. Comme le sujet s’appelle analyse de survie et que nous nous
intéressons aux décès, aux défaillances et aux défauts et non à la période
où rien ne se passe, nous choisissons généralement d’étudier la fonction de
survie 𝑆(𝑡) = ℙ(𝑌 > 𝑡) au lieu de la fonction de répartition 𝐹(𝑡) = 1 − 𝑆(𝑡).
La fonction de survie joue ici le rôle d’extension naturelle de l’approche pré-
cédente par seuillage puisque chaque instance 𝑆(𝜏) représente un problème
de classification binaire, on résout donc ici toutes ces instances en même
temps. Bien entendu, d’autres quantités d’intérêt peuvent être modélisées
en fonction des particularités du problème, comme décrit plus tard dans
figure 3.1. En particulier, dans le cas où 𝑌 admet une densité 𝑝(𝑡),162 nous
pouvons définir le risque instantané

𝜆(𝑡) = lim
Δ𝑡→0

ℙ (𝑌 ∈ [𝑡, 𝑡 + Δ𝑡] ∣ 𝑌 > 𝑡)
Δ𝑡

,

qui se rapporte à la survie naturellement par la relation

𝜆(𝑡) = 𝑝(𝑡)
𝑆(𝑡)
.

De même, le risque intégré ou cumulatif Λ(𝑡) = ∫𝑡
0
𝜆(𝑡) d𝑡 est souvent

étudié en raison de la relation

𝑆(𝑡) = exp(−Λ(𝑡)) ,

qui découle trivialement de la définition de 𝜆. Notez que toutes ces quanti-
tés définissent de manière unique la loi de 𝑌 et peuvent donc être utilisées
de manière interchangeable.

Bien que la formulation temps jusqu’à l’événement soit particulièrement
bien adaptée à notre problème, nous devons malheureusement encore
composer avec un horizon temporel. Non seulement nos observations
s’arrêtent nécessairement à l’instant présent, ou du moins au moment où
nous avons cessé de collecter des données,163 mais certaines observations
ne sont pas observées pour des raisons indépendantes de notre volonté,
comme le fait qu’un patient abandonne une étude ou qu’une entreprise
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Fin de l’étude

Figure C.6 : Données de survie
censurées à droite.

164 : Il est possible de définir éga-
lement la censure à gauche ainsi
que la troncature gauche/droite.
La plupart des résultats présentés
ici peuvent être adaptés aux cas
plus généraux sans difficulté
autre que technique.

fusionne avec une autre et de fait “disparaisse”. En réalité, nous pouvons
donc rarement observer 𝑌, la véritable variable d’intérêt, et nous n’obser-
vons qu’un certain temps 𝑇 que nous qualifierons de censuré à droite tel
que

𝑇 = min(𝑌, 𝐶)

où𝐶 ∈ ℝ+ est une variable aléatoire de nuisance, jouant un rôle symétrique
à 𝑌 et appelée ici variable de censure, qui englobe toutes les raisons pour
lesquelles notre variable d’intérêt peut être inobservée comme l’écoulement
du temps, la fin de l’étude, une observation retirée de l’ensemble de données
etc. Nous supposons également que nous savons si le temps que nous
observons est censuré ou non grâce à travers l’indicateur de censure 𝛿
défini par

𝛿 = 𝟙𝑌≤𝐶 = {
1 si 𝑌 ≤ 𝐶
0 sinon.

,

car il n’y aurait sans ce dernier aucun espoir d’estimer une quelconque
quantité utile. Notre ensemble de données, représenté dans figure C.6, est
donc constitué d’observations du couple (𝑇, 𝛿) au lieu de 𝑌.

Cette quantité, paramètre phare de l’analyse de survie,164 comme cela
a été largement étudié dans la littérature statistique : (voir Fleming et
Harrington [1991] ; ou Gill [1994], pour un excellent aperçu des méthodes
utilisées pour obtenir les estimateurs) qui s’est concentré sur les propriétés
asymptotiques des divers estimateurs de 𝑆ou Λ.

C.2.1 Estimateurs de la survie
Le domaine de l’analyse de survie étant trop vaste pour être résumé ici, nous
ne donnerons qu’une brève présentation de l’estimateur clé de la survie
qui servira d’inspiration aux chapitres suivants. Une étude rigoureuse
de la littérature est reportée aux chapitres pertinents. Cependant, si le
lecteur s’intéresse à l’analyse de survie, nous recommandons Klein et
Moeschberger (2003) ; D. R. Cox et Oakes (1984) pour un aperçu général
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165 : Ce qui est souvent le cas.
Dans le cadre médical, nous
sommes par exemple intéressés
par la comparaison entre 𝑆1 et 𝑆2,
les fonctions de survie de deux
traitements concurrents, afin de
prouver une hypothèse du type
𝑆1 > 𝑆2 ou du moins 𝑆1 ≠ 𝑆2

ainsi que le cours mentionné précédemment de Gill (1994) qui motive la
formulation produit-intégral.

Dans le cas où l’objet d’intérêt est la survie 𝑆,165 si nous avions observé
la variable réelle d’intérêt 𝑌, nous pourrions facilement estimer 𝑆 par

𝑆𝑛(𝑡) =
1
𝑛

𝑛

∑
𝑖=1
𝟙𝑌𝑖>𝑡,

qui, par Glivenko-Cantelli, converge uniformément vers la vraie survie.
Ici, nous n’observons que (𝑇, 𝛿) et l’estimateur correspondant serait

̄𝑆𝑛(𝑡) =
∑𝑛𝑖=1 𝟙𝑇𝑖>𝑡,𝛿𝑖=1
∑𝑛𝑖=1 𝟙𝛿𝑖=1

,

qui est biaisé et ne converge pas vers la valeur d’intérêt.
Cependant, après avoir discrétisé le temps à chaque observation 𝑇𝑖,

nous pouvons appliquer la formule de Bayes après avoir remarqué que
localement, à l’intérieur d’un intervalle [𝑇[𝑖], 𝑇[𝑖+1]] où 𝑇[𝑘] est utilisé pour
signifier “la 𝑘-ième plus grande valeur de (𝑇𝑖)” (en ignorant les égalités
pour simplifier), nous pouvons écrire la probabilité conditionnelle qu’un
événement se produise dans cet intervalle étant donné que rien ne s’est
produit jusqu’à présent, comme si aucune censure n’était présente. Autre-
ment dit, si nous désignons par𝑚𝑖 le nombre d’événements dans le 𝑖-ième
intervalle, 𝑛𝑖 le nombre d’individus à risque, c’est-à-dire vivants et non
censurés et 𝑐𝑖 le nombre d’individus censurés au début de l’intervalle i.e. à
𝑇𝑖 alors

ℙ(𝑌 ≤ 𝑇[𝑖+1] ∣ 𝑌 > 𝑇[𝑖]) =
𝑚𝑖
𝑛𝑖 − 𝑐𝑖
.

Nous pouvons donc construire itérativement un estimateur de 𝑆 de la
forme

̂𝑆𝑛(𝑡) = ∏
𝑖|𝑇𝑖≤𝑡
(1 − 𝑚𝑖
𝑛𝑖 − 𝑐𝑖
) ,

ou réécris sous plusieurs formes équivalentes différentes

̂𝑆𝑛(𝑡) =
𝑛

∏
𝑖=1
(1 −

𝛿[𝑖]
𝑛 − 𝑖 + 1

)
𝟙𝑇[𝑖]≤𝑡

= ∏
𝑖=1,…,𝑛
𝑇[𝑖]≤𝑡

( 𝑛 − 𝑖
𝑛 − 𝑖 + 1

)
𝛿[𝑖]
.

On peut montrer que cet estimateur, souvent appelé estimateur de Kaplan-
Meier (Kaplan et Meier [1958]), est consistant. Des résultats similaires
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166 : Ou noyaux.

peuvent être obtenus pour le risque cumulatif Λ avec l’estimateur de
Nelson-Aalen (Nelson [1969] ; Aalen [1978])

Λ̂𝑛(𝑡) =
𝑛

∑
𝑖=𝑖

𝛿𝑖𝟙𝑇𝑖≤𝑡
∑𝑛𝑗=1 𝟙𝑇𝑗>𝑇𝑖

.

Bien que nous ayons ici ignoré les covariables𝑋 et donc le conditionne-
ment sur𝑋, ces estimateurs nous intéressent particulièrement en raison
de la facilité d’introduction de ce conditionnement : en introduisant une
moyenne locale autour de𝑋, par exemple par le biais de noyaux, on peut
obtenir des estimateurs conditionnels à𝑋 = 𝑥 de la forme

Λ̃𝑛(𝑡 ∣ 𝑋 = 𝑥) =
𝑛

∑
𝑖=𝑖

𝛿𝑖𝟙𝑇𝑖≤𝑡𝐾(𝑥 − 𝑋𝑖)
∑𝑛𝑗=1 𝟙𝑇𝑗>𝑇𝑖𝐾(𝑥 − 𝑋𝑗)

,

où 𝐾 est généralement une fonction de densité de probabilité166 symé-
trique autour de 0.

C.2.2 Modèles paramétriques et semi-paramétriques
Une observation surprenante qui débloque un grand nombre de techniques
déjà existantes dans le cadre non censuré réside dans la décomposition
conditionnelle de la vraisemblance des observations. Si nous supposons
pour l’instant que 𝑌 et 𝐶 sont indépendants, nous pouvons écrire la vrai-
semblance de l’observation 𝑖 comme suit

ℙ (𝑇 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝛿 = 𝛿𝑖 ∣ 𝜃)

= ℙ (𝑇 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝛿 = 1 ∣ 𝜃)𝛿𝑖

⨯ ℙ (𝑇 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝛿 = 0 ∣ 𝜃)1−𝛿𝑖

= ℙ (𝑌 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝐶 ≥ 𝑇 ∣ 𝜃)𝛿𝑖

⨯ ℙ (𝐶 ∈ [𝑇𝑖, 𝑇𝑖 + d𝑡], 𝐶 < 𝑇 ∣ 𝜃)1−𝛿𝑖

= (𝑝 (𝑇𝑖 ∣ 𝜃) 𝑆𝐶(𝑇𝑖−))
𝛿𝑖 (𝑝𝐶(𝑇𝑖)𝑆(𝑇𝑖 ∣ 𝜃))

1−𝛿𝑖 , (C.1)

où 𝜃 ∈ Θ est ici le paramètre décrivant la famille d’intérêt, c’est-à-dire la
distribution de la survie et 𝑝𝐶, 𝑆𝐶 sont la densité et la survie de la variable
de censure. La quantité précédente de équation (C.1) implique à la fois
les objets d’intérêt 𝑝 et 𝑆 mais aussi les quantités de nuisance 𝑝𝐶, 𝑆𝐶 ce
qui semble à première vue être un problème. Cependant, comme 𝐶 est
précisément une variable de nuisance et donc non pertinente pour nous,
il n’est pas utile de la modéliser et elle ne fait donc apparaître 𝜃 d’aucune
façon . Ainsi, après avoir ignoré ces quantités en les traitant comme des
constantes, nous pouvons écrire la vraisemblance comme suit

ℒ ∝
𝑛

∏
𝑖=1
𝑝(𝑇𝑖 ∣ 𝜃)𝛿𝑖𝑆(𝑇𝑖 ∣ 𝜃)1−𝛿𝑖 . (C.2)
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Figure C.7 : Contribution indivi-
duelle des observations censurées
et non censurées.

La quantité de équation (C.2) est souvent appelée la vraisemblance par-
tielle, et peut être directement utilisée pour l’estimation par maximum de
vraisemblance en ignorant la constante cachée qui absorbe les quantités de
nuisance et ne modifie en rien la solution. La formulation précédente de la
vraisemblance partielle est une conséquence assez naturelle de la structure
très spécifique du problème censuré à droite de l’analyse de survie, comme
on peut le voir dans figure C.7 ; car elle exprime simplement que lorsque
l’observation est la vraie quantité, nous pouvons mettre à jour nos connais-
sances de la manière habituelle ; en revanche, lorsque l’observation est
censurée, le mieux que nous pouvons apprendre est “le vrai temps jusqu’à
l’événement est plus grand que l’observation actuelle”.

Puisque équation (C.2) rend possible l’estimation par maximum de
vraisemblance, il est possible d’aborder le problème de l’analyse de survie
par le biais de la modélisation paramétrique, en prenant soin de choisir
une famille paramétrique avec support dans ℝ+ ce qui est par exemple
l’approche que nous utiliserons dans chapitre 3. En raison de son lien in-
time avec la recherche médicale, il est courant en analyse de survie de ne
pas s’intéresser à la survie 𝑆 elle-même, mais à la comparaison de 𝑆1 et
𝑆2, les survies spécifiques à la cause de deux populations, correspondant
par exemple à un traitement de référence ou placebo et à un nouveau
traitement ou plus généralement de 𝑆(⋅ ∣ 𝑋1) par rapport à 𝑆(⋅ ∣ 𝑋2). Dans
ce cas, les approches semi-paramétriques ont connu un grand succès dont
le modèle des hasards proportionnels de D. R. Cox (1972) est certainement
le représentant le plus emblématique. Dans le modèle à risques propor-
tionnels, souvent appelés modèle de Cox, les risques sont supposés être
proportionnels de telle sorte que

𝜆(𝑡 ∣ 𝑋) = 𝜆0(𝑡) exp(𝜃
⊺𝑋) ,

où 𝜆0 est intentionnellement gardé comme non paramétrique et entière-



C Introduction - Français 216

167 : L’estimateur de Kaplan-
Meier du paragraphe précédent
peut en fait également être
obtenu par une estimation non
paramétrique du maximum de
vraisemblance

ment général. La vraisemblance partielle peut alors s’écrire sous la forme

∑
𝑖∶𝛿𝑖=1
(𝜃⊺𝑋𝑖 − log ∑

𝑗∶𝑇𝐽≥𝑇𝑖

exp(𝜃𝑋𝑗)) ,

qui, étonnamment, n’impliquent pas 𝜆0 de quelque manière que ce soit et
peux donc être apprise sans difficulté. Notez cependant que si l’on s’inté-
resse à 𝜆(⋅ ∣ 𝑋) et pas seulement à 𝜆(⋅ ∣ 𝑋1)/𝜆(⋅ ∣ 𝑋2), il est alors possible
d’estimer 𝜆0 de manière non paramétrique (Breslow [1975]).

De même, il existe une abondante littérature sur les modèles de régres-
sion tels que le modèle aft (Buckley et James [1979]) où 𝑌 est modélisé
comme

log(𝑌) = − log(𝑓(𝑋)) + 𝜖,

avec 𝜖 une distribution de base, ou comme une régression de Poisson.167
Ces nombreuses méthodes présentent toutefois des défauts importants que
nous aimerions éviter. La plupart des résultats de la littérature statistique
font l’hypothèse que le modèle estimé et le vrai modèle génératif sont dans
la même classe ce qui n’est, bien sûr, jamais vrai, mais a souvent été accepté
comme inévitable afin d’obtenir des résultats théoriques intéressants. Nous
préférerions cependant des résultats qui correspondent à la réalité des
données, c’est-à-dire des bornes qui ne supposent pas que le modèle est
correct, même si les bornes résultantes sont nécessairement moins serrées.
De même, la plupart des résultats traitent de la convergence, et de sa ca-
ractérisation, dans le régime asymptotique. Même si les résultats obtenus
ainsi sont très puissants, ils sont peu utiles aux praticiens confrontés à des
échantillons de taille finis. Ces deux dernières remarques constituent la
base de la théorie de l’apprentissage statistique, ou de ce que la plupart des
gens ont fini par appeler l’apprentissage automatique. Ce travail tente donc
de rapprocher le monde de l’analyse de survie et celui de l’apprentissage au-
tomatique afin d’apporter aux outils existants de l’analyse de survie le type
de garanties théoriques que les praticiens de l’apprentissage automatique
en sont venus à attendre.

C.3 Prédiction censurée en grande dimension
Comme nous l’avons mentionné dans la section précédente, l’analyse de
survie en tant que domaine est principalement née de la nécessité de
décrire et de comprendre des phénomènes naturels. Le court interlude
historique du domaine donné dans annexe B donne plusieurs exemples
d’utilisation demodèles dans le but demieux comprendre le monde afin de
prendre des décisions. Cette approche de la modélisation est certainement
la plus naturelle pour la plupart des gens, car elle est à la fois historique
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168 : Nous utilisons ici simple
pour signifier que nous pouvons
nous attendre en pratique à de
meilleurs résultats sur cette tâche
en utilisant les mêmes données,
par rapport à l’estimation de la
distribution et à la formation
d’un régresseur plugin.

169 : Respectivement en choisis-
sant la perte pinball et l’entropie
croisée.

et, surtout, celle à laquelle les gens ont été exposés au cours de leur vie.
Décrire la nature est, bien sûr, de la plus haute importance pour les épi-
démiologistes, les virologues, les économétristes ou tout autre domaine
scientifique, mais, en général, les praticiens industriels se contentent de
résultats beaucoup plus simples, mais pratiques. Lorsqu’on essaie de lancer
un ballon de basket dans un panier, il est certainement utile de comprendre
la mécanique newtonienne pour savoir que la balle suivra une parabole,
mais il est plus que suffisant de prédire que la balle ira simplement dans
cette direction si vous la lancez de cette façon sans rien comprendre aux lois
du mouvement. Le même principe s’applique à de nombreux domaines
analytiques et, dans notre cas, à la médecine et à la finance. Si l’objectif est
simplement de prédire la survenue d’un événement, et non de comprendre
les raisons menant à cet événement, il suffit d’adopter un point de vue
prédictif. Nous appelons ici prediction la tâche de deviner, c’est-à-dire de
construire un estimateur, une certaine quantité𝑌 à partir de l’entrée ou des
caractéristiques𝑋 en supposant que 𝑌 = 𝑓(𝑋). Pour notre basketteur,𝑋
est l’angle et la force du lancer alors que dans le cadre médical,𝑋 serait les
caractéristiques du patient. De ce point de vue, la fonction 𝑓 est une boîte
noire abstraite englobant toute la dynamique menant au résultat, car seul
le résultat 𝑌 = 𝑓(𝑋) nous intéresse. Nous avons précédemment donné
l’exemple du modèle de régression de Cox, où la survie d’un individu est
modélisée par le taux de hasard instantané 𝜆 tel que

𝜆(𝑡 ∣ 𝑋) = 𝜆0(𝑡) exp(𝛽
⊺𝑋) .

Si ce modèle peut et est souvent utilisé comme modèle prédictif, sa raison
d’être première est l’étude de l’impact relatif des différentes variables à tra-
vers l’étude des coefficients 𝛽𝑖 ; le but étant de comprendre les mécanismes
conduisant à la mort. En revanche, si le but est seulement de deviner la
quantité 𝑌 = 𝑓(𝑋), il est suffisant et plus simple168 de décider d’un certain
critère de qualité de la perte ℒ afin d’essayer de trouver le meilleur 𝑓 pos-
sible pour ce critère compte tenu des données. Mathématiquement, nous
pouvons exprimer ce vague objectif en répondant à la question suivante

argmin
𝑓
𝔼 [ℒ (𝑌, 𝑓(𝑋))] , (C.3)

qui est souvent appelé le problème de minimisation du risque. Cette for-
mulation, bien que peu naturelle à première vue, englobe en réalité de
nombreuses questions courantes sur les données que l’on peut avoir en
fonction du choix de ℒ. Par exemple, si l’on considère que ℒ est la perte
quadratique (𝑌 − 𝑓(𝑋))2, la solution de équation (C.3) est l’espérance
conditionnelle𝔼[𝑌 ∣ 𝑋], tandis que la valeur absolue |𝑌−𝑓(𝑋)| conduit à
lamédiane. Demême, des quantités telles que les quantiles ou la probabilité
conditionnelle peuvent être obtenues de manière similaire en choisissant
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des pertes appropriées ℒ169 et l’art de choisir la perte correcte pour une
tâche particulière attire une attention considérable de la part du monde
de la recherche. Nous soulignons que l’estimation i.e. l’apprentissage de
la densité conditionnelle ou même de l’espérance conditionnelle n’est pas
le but poursuivi ici, et qu’il s’agit de prédiction par l’apprentissage d’une
règle prédictive 𝑓 avec de bonnes propriétés de généralisation. Bien que
les mêmes objets puissent être impliqués dans les deux objectifs, l’objectif
en lui-même n’est pas le même comme l’illustre équation (C.4) dans le cas
où la fonction prédictive peut être écrite comme une intégrale, ce qui est
par exemple le cas pour la moyenne.

∫𝜑(𝑦, 𝑥) 𝑝(𝑦 ∣ 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Objectif

d𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Sous-produit

𝑓(𝑥) = ∫𝜑(𝑦, 𝑥) 𝑝(𝑦 ∣ 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sous-produit

d𝑦
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Objectif

. (C.4)

Bien que de nombreux outils utilisés pour la prédiction soient les mêmes
que ceux utilisés dans les approches plus traditionnelles, la différence
fondamentale dans la question à laquelle on répond justifie des résultats
théoriques différents. Comme nous l’avons dit précédemment, nous nous
intéressons à la résolution du problème équation (C.3), c’est-à-dire à la
recherche de la meilleure 𝑓 possible en moyenne parmi une famille ℱ
de fonctions potentielles où notre critère dépend de l’objectif final. Bien
entendu, nous ne connaissons pas la distribution de (𝑌,𝑋) ni même la
véritable famille de fonctions qui contient le véritable 𝑓, et ne pouvons
donc pas résoudre directement équation (C.3). Nous pouvons toutefois
résoudre la version empirique de ce problème à partir des données dont
nous disposons, à savoir

argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1
ℒ (𝑌𝑖, 𝑓(𝑋𝑖)) , (C.5)

que nous appelons l’approche de minimisation du risque empirique (erm).
Étant donné que l’on ne résout pas le bon problème, mais seulement une
version empirique et restreinte de celui-ci, il semble légitime de se de-
mander quelles sont les garanties que la solution obtenue soit une bonne
solution. Cette dernière question est le principal problème de la théorie de
l’apprentissage statistique et a été abordée sous de nombreux angles, nous
adoptons cependant ici l’approche pac : nous disons que la solution ̂𝑓𝑛 de
équation (C.5) est bonne si elle est bonne selon équation (C.5) avec une
grande probabilité. C’est-à-dire, étant donné que nous savons seulement
calculer

ℛ𝑛( ̂𝑓𝑛) = min
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1
ℒ (𝑌𝑖, 𝑓(𝑋𝑖)) ,

que la quantité
|ℛ𝑛( ̂𝑓𝑛) − ℛ(𝑓∗)| , (C.6)
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Sur données censurées Sur données observées Sur données repondérées Figure C.8 : Apprentissage d’une
fonction linéaire sur les données
censurées brutes, les données
entièrement observées et les
données observées repondérées.

170 : De même que ℛ𝑛( ̂𝑓𝑛) est
petite, mais ceci est implicite
étant donné qu’elle est explicite-
ment définie telle quelle.

est petite,170 oùℛ(𝑓∗) est le minimum de équation (C.3). De nombreux
résultats de cette forme existent, comme nous le verrons dans, §2.1, mais il
reste un problème flagrant qui rend l’approche erm inadaptée à l’analyse
de survie : dans équation (C.5) 𝑌𝑖 n’est pas observé. Il est toutefois possible
d’adapter équation (C.5) au cadre de la survie et de prouver des résul-
tats similaires à ceux qui existent déjà dans la théorie de l’apprentissage
statistique sans censure.

C.3.1 Prédiction censurée
Dans notre cas, 𝑌 est inobservée et seuls (𝑇, 𝛿), la variable censurée ainsi
que l’indicateur de censure, sont observés à la place. Nous montrons, en
suivant la série séminale de Stute (1996, 1993a,b, 1995a,b, 2003) ; Stute et
J.-L. Wang (1993) et les travaux de Dabrowska (1989) que la quantité inob-
servable de équation (C.3) peut être remplacée par la quantité repondérée,
mais mathématiquement équivalente suivante :

argmin
𝑓
𝔼[ 𝛿
𝑆𝐶(𝑇− ∣ 𝑋)

ℒ (𝑇, 𝑓(𝑋))] , (C.7)

et la version empirique correspondante

argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

ℒ (𝑇𝑖, 𝑓(𝑋𝑖)) . (C.8)

Bien sûr, alors que la variable inobservable 𝑌 soit remplacée par les quan-
tités observables 𝑇 et 𝛿, nous faisons maintenant intervenir la fonction
de survie 𝑆𝐶 qui elle est inconnue. En résolvant ce nouveau problème
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empirique repondéré, au lieu de s’appuyer sur l’ensemble des données
censurées ou uniquement sur les individus entièrement observés, nous
sommes en mesure d’éliminer le biais d’estimation qui résulterait autre-
ment en une sous-estimation, comme on peut le voir dans figure C.8. Bien
que ce changement semble inutile puisque nous avons échangé une quan-
tité inconnue contre une autre, nous savons comment estimer 𝑆𝐶 comme
vu dans annexe C.2 et nous pouvons donc plutôt étudier

argmin
𝑓∈ℱ

1
𝑛

𝑛

∑
𝑖=1

𝛿𝑖
̂𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

ℒ (𝑇𝑖, 𝑓(𝑋𝑖)) . (C.9)

Dans le chapitre 2, nous montrons qu’en utilisant un estimateur à noyau
̂𝑆𝐶 de 𝑆𝐶, nous pouvons obtenir des bornes non asymptotiques et non

paramétriques de l’erreur de généralisation équation (C.6) similaires à
celles présentes de la littérature de l’apprentissage statistique sans censure.
Comme ̂𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖) est elle-même une variable aléatoire impliquant tous
les couples (𝑇𝑖, 𝑋𝑖) des données d’apprentissage, ici sous la forme d’une
somme d’estimateurs indépendants, le rapport

𝛿𝑖
𝑆𝐶(𝑇𝑖 ∣ 𝑋𝑖)

ℒ (𝑇𝑖, 𝑓(𝑋𝑖)) ,

n’est pas indépendant et identiquement distribué, ce qui rend invalides la
plupart des techniques de preuve impliquant des sommes empiriques de
variables i.i.d. A défaut, nous nous appuyons sur le fait que la quantité précé-
dente peut être écrite comme un rapport de sommes afin de la linéariser et
de la traiter ensuite comme une 𝑈-statistique, c.a.d.. une généralisation de
la moyenne empirique, sur laquelle des résultats de concentration peuvent
être appliqués. Cela nous permet de prouver dans théorème 2.9 des bornes
de généralisation sur le problème erm censuré qui sont similaires au cas
complètement observé :

Theorem (Contrôle uniforme de l’excès de risque). Supposons que les
Assumptions 2.1 et 2.4 soient remplies. Il existe des constantes ℎ0,𝑀1,𝑀2
et 𝑀3 qui dépendent uniquement de (𝐴, 𝑣),𝑀Φ, 𝐿, 𝐾 et 𝑏, de sorte que,
pour tout 𝑛 ≥ 2 et 𝜀 ∈ (0, 1), l’événement

|ℛ( ̃𝑓𝑛) − ℛ(𝑓⋆)| ≤ 𝑀1 (√
log (𝑀2/𝜀)
𝑛
+
| log(𝜀ℎ𝑑/2)|
𝑛ℎ𝑑

+ ℎ2) ,

se produit avec une probabilité supérieure à 1 − 𝜀 à condition que ℎ ≤ ℎ0,
𝑛ℎ2𝑑 ≥ 𝑀3 |log(𝜀ℎ𝑑)|.

De plus, nous prouvons expérimentalement dans §2.5 que les perfor-
mances obtenues sur données réelles avec le cadre proposé correspondent
à celles attendues à partir des bornes théoriques.
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Ces résultats, qui représentent la principale contribution de cette thèse,
ont été présentés demanière préliminaire lors de l’atelierMachine Learning
for Health à NeurIPS 2018 (Ausset, Portier et Clémençon [2018]) et sont
en cours de révision finale pour publication au JMLR au moment de la
rédaction de cet article.
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C.3.2 Estimateurs flexibles de la survie
Bien que les résultats présentés dans le chapitre 2 donnent de solides justi-
fications théoriques pour l’utilisation du cadre ipcw erm, la performance
dépend toujours fortement de la qualité des poids 𝛿𝑖/𝑆𝐶(𝑇𝑖|𝑋𝑖) et donc
de l’estimateur de 𝑆𝐶. Au-delà de l’utilisation dans la régression ipcw, les
estimateurs de la survie présentent pour la communauté un intérêt en soi,
et de nombreux estimateurs flexibles ont été proposés au fil des ans. Dans
le chapitre 3, basé sur Ausset, Ciffreo et al. (2021), nous étudions un type
particulier d’estimateur de 𝑆 construit à partir d’un modèle génératif de la
variable d’intérêt, c.a.d.. 𝑌 dans le cadre général de la survie ou 𝐶 pour les

https://arxiv.org/abs/1906.01908
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poids ipcw, avec une vraisemblance accessible. En modélisant 𝑌 comme
la variable transformée

𝑌 = 𝑚𝜃(𝑍,𝑋), (C.10)

où𝑚𝜃 est une famille flexible de réseaux neuronaux paramétrés par 𝜃 ∈
Θ et 𝑍 est une distribution simple connue. Nous sommes capables de
déterminer le𝑚𝜃 optimal en maximisant la log-vraisemblance censurée

𝑛

∑
𝑖=1
(𝛿𝑖𝑝𝑌,𝜃 (𝑇𝑖 ∣ 𝑋𝑖) + (1 − 𝛿𝑖) 𝑆𝑌,𝜃 (𝑇𝑖 ∣ 𝑋𝑖)), (C.11)

où 𝑝𝑌,𝜃 et 𝑆𝑌,𝜃 sont la densité et la fonction de survie de 𝑌 telles que
paramétrées par équation (C.10). La paramétrisation donnée par équa-
tion (C.10) est un type de modèle génératif introduit pour la première fois
sous le nom de flux normalisant par Rezende et Mohamed (2015). Son
utilité réside dans le fait que 𝑝𝑌,𝜃 peut être obtenu à partir de 𝑝𝑍 au moyen
de la formule de changement de variable

log𝑝𝑌,𝜃(𝑡 ∣ 𝑋) = log𝑝𝑍(𝑧) − log|det
𝜕𝑚𝜃
𝜕𝑧
| .

De même, nous montrons dans le chapitre 3 qu’il est également possible
de retrouver la survie 𝑆𝑌,𝜃 en adoptant la formulation continue de équa-
tion (C.12) (voir R. T. Q. Chen et al. [2018]),

𝜕
𝜕𝑡
[

z𝜃(𝑡, 𝑋)
log𝑝(𝑦 ∣ 𝑋) − log𝑝(z𝜃(𝑡, 𝑋))

] = [

[

𝑚𝜃(z𝜃(𝑡, 𝑋), 𝑡, 𝑋)

− tr 𝜕𝑚𝜃
𝜕z
]

]
,

[
z𝜃(1, 𝑋)

log𝑝(𝑦 ∣ 𝑋) − log𝑝(z𝜃(1, 𝑋))
] = [
𝑦
0],

(C.12)

permettant de calculer ainsi que de dériver (voir Rackauckas, Ma, Dixit et
al. [2018], pour la différentiabilité des solutions d´odes) toutes les quantités
présentes dans équation (C.11).

Malgré le coût de calcul élevé de la méthode proposée, nous montrons
que par rapport aux approches neuronales existantes telles que DeepCox
(Nagpal et al. [2021]) ou DeepHit (C. Lee, Zame et al. [2018] ; C. Lee, Yoon
et Schaar [2020]), cette approche cnf présente des performances com-
pétitives sur les tâches de régression classiques, mais autorise également
de nouvelles applications. En tant que modèle génératif, l’approche cnf
permet de tirer efficacement des observations conditionnelles, une carac-
téristique très utile en finance où les stress tests et les simulations sont des
exigences réglementaires, mais aussi pour des applications où des dépen-
dances complexes doivent être modélisées et simulées par Monte-Carlo.
Cette dernière application, étant donné son importance particulière pour
la finance, est étudiée plus en détail dans le chapitre 5.
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171 : Mais avec des recoupements
importants.

Si les avantages des modèles génératifs de survie flexibles basés sur les
réseaux de neurones sont indéniables, le coût de calcul peut être difficile
à justifier si l’on considère les performances relativement élevées de mé-
thodes plus simples, et presque gratuites en comparaison, telles que les
forêts aléatoires de survie (Ishwaran et Kogalur [2007]) oumême lemodèle
de Cox (D. R. Cox et Oakes [1984]) ; même si l’on peut contraster par le
fait que la majeure partie du coût est encourue pendant l’apprentissage
et amortie pendant l’inférence. Malgré le fait que la méthode cnf soit
intrinsèquement plus coûteuse, il est toujours possible d’atténuer la charge
de calcul en réduisant la taille du réseau neuronal, ce palliatif ne pouvant
fonctionner que si le nombre de dimensions de𝑋 lui-même est réduit en
même temps. Par conséquent, pour que la méthode proposée présente un
intérêt pratique, il faut trouver un moyen robuste de réduire la dimension
de𝑋.

Papiers de chapitre 3

Guillaume Ausset, Tom Ciffreo et al. (2021). « Individual Survival
Curves with Conditional Normalizing Flows ». In : DSAA’21. IEEE
International Conference on Data Science and Advanced Analytics
@ i n p r o c e e d i n g s { a u s s e t I n d i v i d u a l S u r v i v a l C u r v e s 2 0 2 1 ,

t i t l e = { I n d i v i d u a l { { S u r v i v a l C u r v e s } }

w i t h { { C o n d i t i o n a l N o r m a l i z i n g F l o w s } } } ,

b o o k t i t l e = { { { D S A A } } ’ 2 1 } ,

a u t h o r = { A u s s e t , G u i l l a u m e a n d C i f f r e o , T o m

a n d C l é m e n ç o n , S t é p h a n a n d P o r t i e r , F r a n ç o i s a n d P a p i n , T i m o t h é e } ,

d a t e = { 2 0 2 1 } ,

e v e n t t i t l e = { { { I E E E I n t e r n a t i o n a l C o n f e r e n c e } } o n { { D a t a S c i e n c e } }

a n d { { A d v a n c e d A n a l y t i c s } } }

}

C.3.3 Gestion de la grande dimension
La dernière contributionmajeure de cette thèse présentée dans le chapitre 4
est une réponse au besoin précédemment mentionné d’une technique ro-
buste de réduction de la dimension. Le but de la réduction de la dimension
est de trouver un espace de dimension inférieure qui capture la majo-
rité de l’information présente dans l’espace d’origine. La notion même
d’information est laissée ici intentionnellement assez vague, car, selon la
tâche ou les besoins spécifiques du problème, elle peut changer radicale-
ment conduisant ainsi à des techniques très différentes de réduction de la
dimension.

Nous pouvons, très rudimentairement, diviser les types de tâches en
deux groupes distincts 171 : non supervisé et supervisé. Par non super-
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𝑋 Encodeur 𝑍 Décodeur �̂�

Figure C.9 : vae simplifié.

172 : Même dans ce cas, certaines
personnes considèrent cette
tâche comme un problème
autosupervisé, c’est-à-dire où les
covariables sont 𝑋 et la variable
dépendante également 𝑋.

173 : Ceci s’avère etre équivalent
à la maximisation de la variance
sur le sous-espace projeté.

174 : Ceci n’est pas une revue
exhaustive, plus de détails sont
donnés dans le chapitre 4. No-
tez que si toutes ces techniques
peuvent être considérées d’un
point de vue de reconstruction
pure, c’est-à-dire comme des
problèmes d’optimisation, elles
admettent également des inter-
prétations probabilistes.
175 : La formulation réelle des
vaes est probabiliste et variation-
nelle par essence, car la formula-
tion donnée ici surapprendra les
données.
176 : La adl est souvent consi-
dérée comme un algorithme
de classification, mais elle peut
être utilisée pour la réduction de
dimension.

visé, nous entendons les tâches où l’objet d’intérêt est 𝑋 lui-même qui
est considéré comme la seule quantité observée.172 Sans aucune infor-
mation auxiliaire, la façon la plus naturelle de formuler le problème est
donc de le considérer simplement comme un problème de reconstruction,
qui consiste à trouver un espace de dimension inférieure obéissant à cer-
taines contraintes supplémentaires, de sorte que ce nouvel espaceminimise
une certaine notion de distance par rapport à l’espace d’origine. C’est par
exemple l’approche adoptée pour l’analyse en composante principale (acp)
où la perte quadratique d’une projection sur un sous-espace de dimension
𝑙 est minimisée.173 De même les vaes trouvent la représentation latente 𝑍
de dimension inférieure 𝑙 en apprenant conjointement la fonction de plon-
gement, ou encodeur, enc et la fonction de décodage dec qui minimisent
l’erreur de reconstruction

‖𝑋 − dec ∘ enc(𝑋)‖ ,

ce qui peut être considéré comme une généralisation de l’acp, en prenant
enc = 𝑃 une projection et dec = id,174 comme illustré dans figure C.9.175
D’autre part, les techniques de réduction de la dimension supervisées s’at-
tachent à trouver de bonnes représentations de 𝑋 lorsque (𝑋, 𝑌) est ob-
servé et que la prédiction de 𝑌 étant donné𝑋 est la tâche d’intérêt. Il est
par exemple possible de considérer l’analyse discriminante linéaire (adl)
comme une extension supervisée de l’acp176 qui, au lieu de trouver la
projection qui maximise la variance, trouve la projection qui maximise
la séparation des classes. De même, par analogie avec l’approche vae, au
lieu de trouver une représentation adaptée à la reconstruction, il est ha-
bituel dans le cadre supervisé de trouver une représentation adaptée à la
prédiction, ou à la classification, en prenant simplement l’avant-dernière
couche d’un réseau de neurones, avant la couche de sortie ec, comme
représentation de dimension inférieure d’intérêt tel que représenté dans
figure C.10.

Une autre approche du problème supervisé consiste à considérer comme
importantes les variables qui ont un impact sur la sortie

𝑌 = 𝑓(𝑋) + 𝜀,
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𝑋 Encodeur 𝑍 EC 𝑌

Figure C.10 : Avant-dernière
couche d’un réseau de neurones
comme représentation.

ce qui, assez naïvement, peut être considéré comme la recherche des déri-
vées directionnelles non nulles. Si l’on se limite uniquement à la sélection
des variables, c’est-à-dire en restreignant les directions possibles aux axes
seuls, alors le problème est simplement de trouver les éléments non nuls
du gradient. Cette approche a été étudiée et justifiée dans la littérature
dans le cadre du simple et multi-index où

𝑌 = 𝑓(𝑇𝑋) + 𝜀,

avec 𝑇 une matrice de projection. Dans ce modèle, il est clair que le sous-
espace edr défini par 𝑇 est engendré par le gradient ∇𝑟 de 𝑟(𝑥) = 𝑓(𝑇𝑥).
Plusieurs approches à ce problème spécifique ont déjà été proposées dans
la littérature et sont décrites en détail dans, §4.1, mais aucune ne combine
des bornes non asymptotiques et uniformes sur l’erreur du gradient et de
la fonction de régression elle-même avec une approche des 𝑘 plus proches
voisins (𝑘-nn) lorsque le gradient est supposé creux. L’approche 𝑘-nn est
particulièrement intéressante en pratique, car elle est non seulement facile
à calibrer et à comprendre pour les profanes, mais elle permet également
d’éviter les cas pathologiques où trop peu d’exemples sont présents dans
un voisinage choisi. Nous donnons dans le chapitre 4 une formulation
linéaire locale lasso du problème de la forme

argmin
(𝑟,𝛽)∈ℝ𝑑+1

∑
𝑖∈ ̂𝚤𝑘(𝑥)
(𝑌𝑖 − 𝑟 − 𝛽

⊺(𝑋𝑖 − 𝑥))
2 + 𝜆‖𝛽‖1, (C.13)

et montrons dans théorème 4.1 qu’il est possible d’exploiter la sparsité sup-
posée du gradient pour améliorer les bornes de l’erreur, avec des résultats
similaires sur la fonction de régression elle-même dans théorème 4.2.

Theorem. Supposons queAssumptions 4.1 à 4.4 soient remplies. Soient 𝑛 ≥ 1
et 𝑘 ≥ 1 tels que 𝐶𝑘 ≤ 𝐶0, prenons

𝜆 = 𝐶𝑘 (√2𝜎2
log (16𝑑/𝛿)
𝑘
+ 𝐿𝐶2𝑘) .
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Alors, nous avons avec une probabilité plus grande que 1 − 𝛿,

‖∇̃𝑘𝑟(𝑥) − ∇𝑟(𝑥)‖2 ≤ 24
2√|𝒮𝑥| (𝐶−1𝑘 √

2𝜎2 log (16𝑑/𝛿)
𝑘

+ 𝐿𝐶𝑘) ,

dès que

𝐶1 |𝒮𝑥| log(
𝑑𝑛
𝛿
) ≤ 𝑘 ≤ 𝐶2𝑛,

où ∇̃𝑘𝑟(𝑥) est la deuxième composante de la solution de équation (C.13), 𝐶0,
𝐶1, 𝐶2 et 𝐿 sont des constantes universelles, 𝐶𝑘 est une constante définie en
détail dans théorème 4.1 et |𝒮𝑥| est le nombre de composantes non nulles
de ∇𝑟(𝑥).

La plupart des exemples de réduction de dimension donnés précédem-
ment, telles que acp ou ald, supposent que les variables importantes
sont les mêmes pour tous les individus et sont donc traitées comme une
étape de prétraitement appliquée à l’ensemble des données avant toute
autre analyse. Il n’y a cependant aucune raison pour qu’une hypothèse
aussi forte soit vraie : si l’ensemble de données comprend par exemple des
hommes et des femmes, il semble pour le moins douteux de penser que les
mêmes variables sont importantes pour les deux sexes et on s’attendrait à ce
qu’une méthode de sélection de variables adaptative soit plus performante.
De même, lorsqu’on compare les caractéristiques des clients d’un prêt, il
semble souhaitable de prendre en compte des caractéristiques différentes
si le client est une multinationale ou une petite entreprise locale. Comme
notre méthode est locale, c’est-à-dire que le gradient est estimé à un 𝑥
spécifique et récupère donc les variables d’importance dans un voisinage
de 𝑥, il est possible de sélectionner différentes variables pertinentes dans
différentes régions de l’espace. Dans §4.5, nous montrons non seulement
comment trouver des variables globalement importantes en agrégeant les
gradients en toutes les observations, mais nous proposons également une
méthode à base d’arbres exploitant l’information locale du gradient afin
d’améliorer les performances.

Enfin, bien que l’analyse théorique du chapitre soit effectuée en ignorant
momentanément toute forme de censure pour des raisons de simplicité, il
s’agit toujours d’un problème erm sur lequel on peut appliquer l’approche
ipcw du chapitre 2, par exemple pour identifier les gènes responsables de
la survie d’un cancer comme fait dans §4.5.2.

Papiers de chapitre 4
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Guillaume Ausset, Stéphan Clémençon et François Portier (2021b).
« Nearest Neighbour Based Estimates of Gradients : Sharp Nonasymp-
totic Bounds and Applications ». In : Proceedings of the 24th Inter-
national Conference on Artificial Intelligence and Statistics. Sous la
dir. d’Arindam Banerjee et Kenji Fukumizu. T. 130. Proceedings of
Machine Learning Research. PMLR, p. 532-540
@ i n p r o c e e d i n g s { a u s s e t N e a r e s t N e i g h b o u r B a s e d 2 0 2 1 ,

t i t l e = { N e a r e s t N e i g h b o u r B a s e d E s t i m a t e s o f G r a d i e n t s :

{ { S h a r p } } N o n a s y m p t o t i c B o u n d s a n d A p p l i c a t i o n s } ,

b o o k t i t l e = { P r o c e e d i n g s o f t h e 2 4 t h I n t e r n a t i o n a l C o n f e r e n c e

o n A r t i f i c i a l I n t e l l i g e n c e a n d S t a t i s t i c s } ,

a u t h o r = { A u s s e t , G u i l l a u m e a n d C l é m e n c o n , S t e p h a n a n d P o r t i e r , F r a n ç o i s } ,

d a t e = { 2 0 2 1 } ,

s e r i e s = { P r o c e e d i n g s o f M a c h i n e L e a r n i n g R e s e a r c h } ,

v o l u m e = { 1 3 0 } ,

p a g e s = { 5 3 2 - - 5 4 0 } ,

p u b l i s h e r = { { P M L R } } ,

u r l = { h t t p : / / p r o c e e d i n g s . m l r . p r e s s / v 1 3 0 / a u s s e t 2 1 a . h t m l }

}

C.4 Schéma de ce manuscrit
Ce manuscrit est organisé comme suit :

• Chapitre 2 traite du cadre de laminimisation du risque empirique en
présence de censure. Des bornes supérieures non asymptotiques et
uniformes de l’erreur de généralisation sont prouvées, tandis que la
fin du chapitre est consacrée aux expériences numériques justifiant
la validité de l’approche au-delà des résultats théoriques.

• Chapitre 3 présente les flux normalisant pour l’analyse de survie,
un modèle génératif dont la vraisemblance est accessible. Plusieurs
applications servent d’exemple de l’utilité d’une telle approche dans
le cadre classique de la survie, tandis que la motivation de la formu-
lation générative est étudiée plus en détail dans chapitre 5.

• Chapitre 4 traite du problème de la grande dimension à travers
la sélection de variables. Un estimateur du gradient est introduit
et des bornes non asymptotiques de l’erreur du gradient supposé
creux ainsi que du régresseur sont prouvées. Comme le gradient est
lui-même utile au-delà de la simple sélection de variables, plusieurs
exemples d’optimisation d’ordre zéro ainsi que de désenchevêtre-
ment sont donnés.

• Chapitre 5 traite de l’analyse de survie en finance à travers le cas
spécifique de la titrisation, l’une des activités principales de BNP
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Paribas CIB. Nous motivons le modèle génératif introduit dans
chapitre 3 par l’utilisation de la modélisation hiérarchique multi-
niveaux.

Au-delà du texte principal qui introduit les contributions de cette thèse,
quelques détails supplémentaires sont donnés en annexe.

• Les preuves classiques qui ne sont pas strictement nécessaires à la
compréhension des résultats principaux sont données dans annexeA
pour référence.

• Un aperçu historique de l’analyse de survie est donné en guise de
distraction et d’intermède aux preuves techniques dans annexe B.

• Chapitre 1 contient la version anglaise originale de cette introduc-
tion.
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Acronyms

erm Empirical Risk Minimization

vc Vapnik-Chervonenkis

ipcw inverse probability of censoring weights

mar missing at random

mcar missing completely at random

mnar missing not at random

loo leave-one-out

𝑘-nn 𝑘-nearest neighbours

tcga The Cancer Genome Atlas

rna ribonucleic acid

dna deoxyribonucleic acid

auc area-under-curve

svr support-vector regression

rsf random survival forest

npmle nonparametric maximum likelihood estimation

em expectation maximization

ode ordinary differential equation

sabr “stochastic alpha, beta, rho”

sde stochastic differential equation

pde partial differential equation

gan generative adversarial network

vae variational autoencoder
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aft accelerated failure time

crps continuous ranked probability score

kl Kullback–Leibler

ad automatic differentiation

ude universal differential equation

sdde stochastic delay differential equation

lu lower-upper decomposition

ivp initial value problem

pca principal components analysis

bs Brier score

bll Binomial log-likelihood

ibs integrated Brier score

ibll integrated Binomial log-likelihood

ppca probabilistic principal component analysis

brca BReast CAncer gene

lle locally linear embedding

umap uniform manifold approximation and projection for dimension reduction

sne stochastic neighbor embedding

elbo evidence lower bound

nf normalizing flow

cnf continuous normalizing flow

nlp natural language processing

lda linear discriminant analysis

lasso least absolute shrinkage and selection operator

edr effective dimension reduction

egop expected gradient outerproduct
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kd 𝑘-dimensional

pac probably approximately correct

rwa risk weighted assets

bis Bank for International Settlements

cdf cumulative distribution function

a-irb advanced internal ratings-based

dnn deep neural network

ann artificial neural network

fc fully connected

cart classification and regression tree

ggf gradient guided forest

rf random forest

abs asset based security

var value-at-risk

milp mixed integer linear programming

mcmc Markov chain Monte Carlo

cv cross-validation

glm generalized linear model

gpu graphical processing unit

sir Susceptible, Infectious, or Recovered



Glossary

𝜆 Instantaneous hazard rate

Λ Cumulative hazard rate

Λ̂𝑛 Kernel estimator of the cumulative hazard rate

𝑋 Covariates (random variable)

𝑋𝑖 Covariates of patient 𝑖 (random variable)

𝛽 Parameter column vector of size 𝑑

ℒ Loss of the form ℒ(𝑌, 𝑓(𝑋))

𝔼 expectation

ℙ Probability

ℙ𝑛 Empirical probability associated with the measure 1𝑛 ∑
𝑛
𝑖=1 𝛿𝑌𝑖,𝑋𝑖

𝕍 Variance

ℛ Risk functionℛ(𝑓) = argmin𝔼 [ℒ(𝑌, 𝑓(𝑋))]

ℛ𝑛 Empirical risk function on𝒟𝑛,ℛ𝑛(𝑓) = argmin 1𝑛 ∑
𝑛
𝑖=1 ℒ(𝑌𝑖, 𝑓(𝑋𝑖))

ℛ̃𝑛 ipcw empirical risk function on𝒟𝑛,ℛ𝑛(𝑓) = argmin 1𝑛 ∑
𝑛
𝑖=1

𝛿𝑖
𝑆𝐶(𝑇𝑖∣𝑋𝑖)
ℒ(𝑇𝑖, 𝑓(𝑋𝑖))

ℛ𝕂 ipcw risk restricted to𝕂

ℛ̃𝑛,𝕂 ipcw empirical risk restricted to𝕂

𝑓 Regression or predictive function 𝑌 = 𝑓(𝑋)

𝑓∗ Minimizer of the risk argmin𝑓ℛ(𝑓)

̄𝑓 Minimizer of the restricted risk argmin𝑓∈ℱℛ(𝑓)

̂𝑓𝑛 Minimizer of the empirical restricted risk argmin𝑓∈ℱℛ𝑛(𝑓)

ℱ Candidate class of functions of 𝑓 the regression function, e.g. linear functions, trees etc.
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𝑌 Target variable, time-to-event in the survival setting

𝑇 Observed time such that 𝑇 = min(𝑌, 𝐶)

𝐶 Unobserved, nuisance, censoring variable

𝑝𝐶(⋅ ∣ 𝑋) The conditional density of 𝐶, i.e. 𝑝𝐶(𝑡 ∣ 𝑋) = ℙ (𝐶 ∈ [𝑡, 𝑡 + d𝑡[∣ 𝑋)

𝑝𝑌(⋅ ∣ 𝑋) The conditional density of 𝑌, i.e. 𝑝𝑌(𝑡 ∣ 𝑋) = ℙ (𝑌 ∈ [𝑡, 𝑡 + d𝑡[∣ 𝑋)

𝑆𝐶(⋅ ∣ 𝑋) The conditional survival function of 𝐶, i.e. 𝑆𝐶(𝑡 ∣ 𝑋) = ∫
∞
𝑡
𝑝𝐶(d𝑢 ∣ 𝑋)

𝑆𝑌(⋅ ∣ 𝑋) The conditional survival function of 𝑌, i.e. 𝑆𝑌(𝑡 ∣ 𝑋) = ∫
∞
𝑡
𝑝𝑌(d𝑢 ∣ 𝑋)

̂𝑆𝐴,𝑛(⋅ ∣ 𝑋) Kernel estimator of the conditional survival function of the variable 𝐴

̂𝑆𝐶,𝑚(⋅ ∣ 𝑋) Empirical estimator of 𝑆𝐶(⋅ ∣ 𝑋)

̂𝑆𝑌,𝑚(⋅ ∣ 𝑋) Empirical estimator of 𝑆𝑌(⋅ ∣ 𝑋)

ℰ Excess risk ℰ( ̂𝑓𝑛), ℱ) = ℛ( ̂𝑓𝑛) − ℛ( ̄𝑓)

ℜ Rademacher complexity

ℜ𝑛 Empirical Rademacher complexity

𝒟𝑛 Set of training data {(𝑌𝑖, 𝑋𝑖, 𝛿𝑖)}

𝜈(ℱ) vc dimension ofℱ

𝛿 Censoring indicator 𝛿 = 𝟙𝑌≤𝐶

𝑓 ∗ 𝑔 Convolution of 𝑓 and 𝑔

𝑆(𝑡−) Left-limit of 𝑆 at 𝑡

𝐻(𝑢 ∣ 𝑋) Subsurvival𝐻(𝑢 ∣ 𝑋) = ℙ (𝑌 > 𝑢 ∣ 𝑋)

𝐻0(𝑢 ∣ 𝑋) Subsurvival𝐻0(𝑢 ∣ 𝑋) = ℙ (𝑌 > 𝑢, 𝛿 = 0 ∣ 𝑋)

�̂�𝑛(𝑢 ∣ 𝑋) Kernel estimator of the subsurvival𝐻(𝑢 ∣ 𝑋)

�̂�0,𝑛(𝑢 ∣ 𝑋) Kernel estimator of the subsurvival𝐻0(𝑢 ∣ 𝑋)

𝐾 Symmetric kernel function

𝐾ℎ Scaled symmetric kernel function 𝐾ℎ(𝑥) =
1
ℎ𝑑𝐾(

𝑥
ℎ )

ℝ The reals.

𝕏 Space of𝑋
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𝕂 Compact subspace of ℝ ⨯ 𝕏

𝑔 Density of𝑋

̂𝑔𝑛 Kernel estimator of the density of𝑋

𝜖 A Rademacher random variable in {−1, 1}

𝜀 A supposedly small random variable or noise

𝑍𝑛(𝜑) Random process of variations of the risk of 𝜑 (see chapter 2)

∝ Proportional to

𝑀⊺ Transposition of𝑀
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A
abs, see also asset based security
active set, 146
adjoint method, 125
asset based security, 177
automatic differentiation, 119

forward mode, 119
reverse mode, 119

C
cart, 149, 150
change of variable, 17, 120

continuous, 17, 121
complexity, 28

Rademacher, 29
Vapnik-Chervonenkis, 30

preservation, 31
subgraph, 31

convolution product, 42
credit

capital requirement, 5
counterparty risk, 3
ruin theory, 3
rwa, 4

curse of dimensionality, 134

D
deep bayesian modelling, 186
disentanglement, 156

E
effective dimension reduction, 139
empirical gradient, 138
ES𝛼, see also expected shortfall
expected shortfall, 179

G
Gaussian smoothing, 152
generative models, 115
Glivenko-Cantelli

uniform, 29
Rademacher, 29
Vapnik-Chervonenkis, 31

gradient free optimization, 152
gradient guided trees, 150
gradient outer product, 139

empirical, 140

I
ipcw risk, 35

doubly robust, 38
empirical, 35

Beran, 41
estimated, 35

ipcw weights, 36

J
jacobian, 121

K
Kaplan-Meier integral, 37
𝑘-d trees, 148
kernel, 43
𝑘-nn

ball, 143
neighbourhood, 143
regressor, 143

Kolmogorov forward, 113

L
lasso local linear estimator, 144
local leave-one-out, 149
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local linear estimator, 20, 144
gradient error, 20

M
mirror descent, 153
multilevel hierarchical modelling, 186

N
nearest neighbour search

amortization, 148
approximate, 148

normalizing flow, 16, 118
conditional, 126
continuous, 122

P
portfolio, 179
portfolio optimization, 179
portolfio, 177
product integral, 109
pullback, 122
pushforward, 118

R
random forest, 150
ratings, 184
reduction of dimension, 18, 135

supervised, 136
lda, 19, 136
single index, 20, 139

unsupervised, 135
lle, 136
pca, 18, 135
ppca, 136
sne, 136
umap, 136
vae, 18, 136

representation learning, 156
risk

weighted, 36
risk minimization, 12, 25

empirical, 13, 25
empirical ipcw risk, 14

estimated ipcw risk, 15

excess risk, 26
decomposition, 27
tail bounds, 49
uniform control, 49

generalization gap, 13
ipcw risk, 14

uniform control, 15
Rosenbrock function, 152

S
seniority, 178
survival

aft, 11
classification, 6
deep exponential family, 114
Λ, see integrated hazards
λ, see instantaneous hazards
instantaneous hazards, 7
integrated hazard

conditional, 43kernel estimator, 43
integrated hazards, 7
Kaplan-Meier, 9
likelihood, 9

partial, 10, 106
proportional hazards, 11

multistate models, 113
Nelson-Aaelen, 9

conditional, 9
proportional hazards, 11, 12
right censored, 7

censored time, 7
censoring indicator, 7
censoring variable, 7
survival variable, 7

subsurvival, 43
kernel estimator, 43

survival function, 6
uniform bounds, 44

time-to-event, 6
Weibull time-to-event, 114

survival gradient, 151

T
tranching, 178
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V

value-at-risk, 179

Z
zeroth order optimization, see also

gradient free optimization
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